
- A195ftg 753 DECISION SUPPORT REQUIREMENTS IN A UNIFIED LIFE CYCLE 1/'1
ENGINEERING (ULCE)..(U) INSTITUTE FOR DEFENSE ANALYSES
ALEXANDRIA VA K J1 RICHTER ET AL. MAY Be

UNCLASSIFIED IDA-P-2664-VOL-2 IDR/HQ-S7-326 Fv'G 05/3 M

mohhhhmhmhhhl
mhhhhhhhhh

, 3 III

lg'111112.

J
% %%(
lI

IDA PAPER P-2064

DECISION SUPPORT REQUIREMENTS IN A UNIFIED LIFE
CYCLE ENGINEERING (ULCE) ENVIRONMENT

Volume II: CONCEPTUAL APPROACHES TO OPTIMIZATION

W)

N Shapour Azam, University of Maryland
LO Joseph Naft, University of Maryland,
0) Michael Pecht, University of Maryland
To Karen J. Richter, IDA

DTIC
JUL 1319M May 1988 N ~9 SrAIT E

S ELECTED MlulA

Prepared for
Office of the Under Secretary of Defense of Acquisition

(Research and Advanced Technology)

Supported by
Air Force Human Resources Laboratory

Wright-Patterson AFB, Ohio

* A INSTITUTE FOR DEFENSE ANALYSES
1801 N. Beauregard Street, Alexandria, Virginia 22311

IDA Log No. HO 87-32845

DENNNS
ORpilm thuW * iAla jes*m f b pd r uws li dl N work.

dkdk mW pel, w (b) udise a dt d~pbm se Is Nou bEw s :r
&au*, one Cuops= -- m be pubis w (s) uid*= Mum that km alpilsa no=am*
hopasma MA peift m resisum by odelie past aN mauis is somt Sat Mogb

Pup..- amumal m tWlauly iadrelmi Udemlal wt pasy baum. They sammueat
One ieeb dl mpeidd " - I I Ih rmpade orpleenIII~ d a Ifam ba ies q"m resla
wsL Pupa,.m mWse Ms swon 1*a the meet ehidmli i thm e mpesm of

rmbrme pap Ii bprmaeIea s,

IDA Mwmaim Ampad le eI.te umm emOw casm d One IqIammeis er~ wh eMA ls is
mmidsmwkdMle .iomr~lasi. emi 1a 1-1m Isma lstsml upied

p" up p" *0 ae-ies ,s futi Idemme tha Is memmml .mmyim - l , OW on
sob t mob mal , 'eed ,l I mmm, meal.,., w bIsg, or d ab is"m-upe Ws
No see dl a bameigmis. Rew dl Ums~u Rupmb Is mimi I thft Ima

Ib ysW -l- da MAm eal.W caays by bdelugmp emmu mommi to upems
sud eher dealualm by the upemeau, wmli pupdat.

ThO umub upum In hsk lesurMa wes umOmAl mie W~asa MAM 2 SC OW2 tar[h nk Ie I -d t sime. The p 1l1m1 w of ths WIN iesumi 1m III MAkds oemias-
mea by the Depeibsa d Dstia, em ibseas the muat o@I sem u reImu the
dfslm pealmi IN that suay.

7Whi pup. ka km tesisumi by D ba nisesIm that N msi 11gb k ll di thqmsges,1
slieisl, adi neod Msyal me1101imley e that Ine smsmIu slam Au1

.. nv. I

UNCLASSIFIED A A 1-
SEICUR"T CL5MRCAVIG oFpT"" PAGE

REPORT DOCUMENTATION PAGE
IA. RPORT SWcUM" CLASWATOM 1b. RESTRICMlV MAOENGE

UNCLASSIFIED ____________________

I&. ECUN. CLASSIFCATION AUTHORITY S. NO!UUTIOWAVAILANUTY OP REPORT

DO Frm 24 daed Octber W3Approved for public release: istribution unimited
2k. 0ECLASSPICATIOWOOWNGRAUING SCHEDULE

4. PRORIN OrGAMZATIC01 REPORT EHESERIE ILc~ T. AO MONITORING OAIMREPTNUANlOW
IDA Paper P-2064 ___________________

I&NAM O P REE ORGAIZAIONP&OFCSYBL7.NMOMNIRNGRAIZTN

Inslitute for Defense Analyses ____________________ManaementOffic

0116 ADDRESS (CfTY. STATE, AND ZIP O00E) lbk ADURESS (CITY. STATE. AND MP CODE)

1801 North Beauregard Street 1801 North Beauregard Street
Alexandria. Virginia 22311 Alexandria, Virginia 22314

S&. N"ME OP PIJNDMOMIPONOOENG ORGAINTATION .I OFFICE SYMO S. PRocuMininr ISTRUMENT IDEIICATION NUMBER

Office of the Under Secretary of Defense MDA 903 84 C0031
(R,?AT1YET

Se. ADDRESS PIF Slf WUp CeO IL SOURCE OPFPUNDIG NUMERk

The Pentagon PROGRAM ELEMENT I PFR4lCT NO. ITASKNa IO ACCESSION NO.

Washington, DC 2=31-3=8 T-D6-48 WOK9NI

11. TII (Mckeft On - III CMloleea)

DECISION SUPPORT REQUIREMENTS IN A UNIFIED LIFE CYCLE ENGINEERING (ULCE) ENVIRONMENT
Volume IL. Conceptual Approaches to Optimization

1I. PERS0ONAL AUTHORIE16

Karen Richter, Shapour Azarm, Joseph Naft, Michael Pecht
ill. TYPE oF REPORT 3b. TME COVERED 1.DATE OF REPORT (Y. MISS. Day) i PAWE COUNT

Fnal RO 3/87 TO 12/87 May 1988 63
1I. SUPPLEMENTARY NOTATION

17. COSAT1 CODES IL SUBJECT YERM$ (C@.IIum an refere Nf evsyad Iden" bb..bk ,mbo

FIELD GROUP SUE-ROUP Decision Support System, DSS, Unified Ufe Cycle Engineering, ULCE,
Optimization Software, Design Process, Decomposition, Measurement,

I I I Trade-offs, Electronics Design Optimization
19. ASETRACT (CISSw s n ves I em end V by Moo esibor)

The goal of Unified Uife Cycle Engineering is to develop an advanced design environinent that allows considerations of
produaibility and supportability to be integrated into the design process in a timely fashion, ILe., early in the design process,
along with the usual considerations of performance, cost, and schedule. A key factor in being able to develop an ULCE
design environmrent Is the management of the design decision-making process in such a way as to ensure that designs,
optimized among all the competing factors, both up front and downstream, can be produced. This report is the result of a
study addressing the design decision support problem under ULCE.

Volume I contains the results of the ULCE 055 Working Group efforts lo outline a research and development plan for the
design decision support for ULCE. Volume IllIs a review of the optkiization techniques currently used or proposed to aid in
the decision processes involved with competing requirements. The third volume of the report applies some of these

-: optimization methods and other decision support techniques to actual design problems.

M5 NSTMOUTIOAAILAOUTY OF ABSTRACT 21. ASTRACT SECURITY CLASSIFCATIONI

0UNCLASSIFIEDIUNLIMITES SAME AS REPORT TC UE"R UNCLASSIFIED

22&MANS O REPONIBL INIVIUAL22b. TELEP1040,1ON ncbe Am Code) 22C. OFFICE

Ila.NAM OFRESONMIE IDIVDUI SYMBOL

00S FO1MaS MA UNCLASSIFIED

6- SECURITY CLASSI04CATION OF TWIS PACE

r5

-F ~ 'F ''F -

'DM

IDA PAPER P-2064

DECISION SUPPORT REQUIREMENTS IN A UNIFIED LIFE
CYCLE ENGINEERING (ULCE) ENVIRONMENT

Volume II: CONCEPTUAL APPROACHES TO OPTIMIZATIONI

Shapour Azam, University of Maryland
Joseph Naft, University of Maryland,

Michael Pecht, University of Maryland
Karen J. Richter, IDA

May 1988

I'IC

I DA

198 ,-,7.X

INSTITUTE FOR DEFENSE ANALYSES

d'~", ' .C''0'it

Contract MDA 903 84 C 0031
Task T-D6-489

U, :,% ;i\.i\..

PREFACE

This report was prepared by the Institute for Defense Analyses (IDA) for the Office

of the Under Secretary of Defense for Acquisition and the Air Force Human Resources

Laboratory under contract number MDA 903 85 C 0031, Task Order T-D6-489, Decision

Support Requirements - ULCE.

The issurance of this report meets the specific tasks of "[identifying] conceptual

approaches to optimization among competing design requirements, [identifying] fertile

areas of research which address the problems of design optimization and trade-offs in an

ULCE environment, [and preparing] a plan for future research."

This report was reviewed by Drs. Jeffrey H. Grotte and Robert I. Winner of IDA

and by Dr. Edison Tse of Stanford University.

CONTENTS

PRFACE .. mi

ACRONYMS AND ABBRE.VIATIONS ... vii

A. INTRODUCTION...1.

B. PROBLEM DEFINITION..1I

1 . What is Design Optimization ... 1I
2. The Design Optimization Model .. 2

3. Classification of Design Optimization Models............................... 3
4. Feasibility and Critical Design Requirements................................ 4

5. Multistage vs. Multilevel Decomposition 5
6. Trade-off Curves and Sensitivity Considerations 6

C . CONCETUAL METHODS ... 7

1 . Classical Methods (Optimality Conditions)................................. 8
2. Unconstrained Methods .. 9
3. Linearly Constrained Methods... 12 0
4. Nonlinearly Constrained Methods .. 14

5. Monotonicity Analysis.. 17
6. Multiobjective Methods... 18

7. Multilevel Decomposition Methods 20

8. Artificial Intelligence (AI) Methods in Design Optimization 21

D. INFORMATION REQUIREMENTS FOR PRACTICAL APPLICATION 24

1 . Selecting a Method... 24

2. Assessment of Results.. 27

E. CURRENT CAPABILITIES OF OPTIMIZATION SOFTWARE 30

I. Computing Advances...30

2. Mainframe Software for Medium Size Problems 30

v

3. Mainframe Software for Large Problems .. 32

4. Software for Microcomputers .. 32

5. Modeling Systems .. 33

F. RESEARCH NEEDS .. 34

1. Current Research ... 34

2. Future Research ... 36

3. Importance of Research in Design Optimization for ULCE 36

REFERENCES ... 39

DISTRIBUTION .. DL-1

Appendices

A. A COUPLED ALGORITHMIC-HEURISTIC OPTIMIZATION SYSTEM

B. ADDITIONAL READING ON OPTIMIZATION

vi

L lsi'

ACRONYMS AND ABBREVIATIONS

AI Artificial Intelligence

COAL Committee on Algorithms

GAMS General Algebraic Modeling System

5 GRG Generalized Reduced Gradient

MOLP Multiobjcctive Linear Programming

NLP Nonlinear Programming

SLP Successive Linear Programming

SQP Successive Quadratic Programming

w.r.t. With respect to

vii ,- .

A. INTRODUCTION

VVarious tradeoffs among competing design requirements and goals will be

ou encountered in Unified Life Cycle Engineering (ULCE). This second volume of the report,

Decision Support Requirements in a Unified Life Cycle Engineering (ULCE) Environment,

looks at the optimization techniques that will be needed by the design team in order to make

decisions among these competing requirements and goals.

After the conceptual approaches to optimization are examined, the report will focus

on the requirements needed to select a particular optimization method and to assess the

results of that method. A list of currently available optimization software is included. In

the concluding section, the research needs for design optimization as an integrated process

for systematizing the ftradeoffs in design will be identified.

B. PROBLEM DEFINITION

1. What is Design Optimization?

The design process generally consists of conception, invention, analysis, and

refinement. Inherent in this process is the test and selection of a "best" design from among

alternative designs. This is the main goal in design optimization.

In order to quantify this goal, the following questions are posed [Ref. 1]:

(1) How do we describe different designs?

(2) What is our criterion for "best" design?

(3) What are the "available means"?

The first question is realized in part by predictive design modeling. Design models

differ from analysis models in that analysis models are generally developed based on the

principles of engineering science, while design models are constructed for specific

prediction tasks. For example, an analysis model may be developed for a circuit board in

which we may compute its reliability based on the junction temperature of the components.

One use of such a model may be to determine quantities such as the flow rate for

rc< convectively cooled boards as a function of the inlet temperature. Design models are quite
different in nature. For example, we might design a circuit board to determine the routing

and location of components while ensuring that it does not fail prior to a specified service -I

time. There is no single, unique design model, but rather different design models for

different requirements.

The implication of the second question is that a design can be modified in order to)0

generate different alternatives, and that there exists a goal that can be selected to give the

most desirable alternative. Rational choice requires a criterion by which the different

alternatives are evaluated and placed in some form of ranking. The choice of the criterion

will be influenced by factors such as the design application, timing, the judgment of the

designer, etc. Thus, the criterion quantity is a subjective and relative approximation of

reality that is useful within the limitation of the model assumptions.

The third question is based on the fact that we are living, working, and designing in

a world that is subject to the limitations imposed by the natural laws, availability of

material, geometric compatibility, etc. Thus by "available" we signify a set of requirements

that must be satisfied by an acceptable design. These requirements may not be uniquely

defined, but are under the same limitations as the choice of our criterion. In summary, a

design optimization can be defined to be the best feasible rational design. In order to be

best, a desired objective should be minimized or maximized. In order to be feasible, a set

of requirements should be satisfied. In order to be rational, all the required information and

knowledge about what is to be optimized should be known, so an appropriate mathematical

model can be presented.

2. The Design Optimization Model

The design optimization model involves a set of variables that describe the design

alternatives, an objective (criterion) expressed in terms of design variables that we seek to

minimize or maximize, and a set of constraints expressed in terms of the design variables

that must be satisfied by any acceptable design. Formally, we assemble all the design

variables in a vector x = (xl,...,Xn). The sclar-valued objective function should be

quantifiably expressed in terms of the design variables, i.e., f(x), and the constraints

expressed by vector-valued functional relations such as

h(x) = 0 and g(x) < 0. (Eq. 1)

Therefore, the formal design optimization model can be expressed by

minimize {f(x) : h(x) = 0, g(x) < 0 } (Eq. 2)

where f is the objective function and h and g are the system of (functional) constraints.

2

1 U V

From a modeling point of view, the functions f, h, and. g may be given as explicit

algebraic expressions of the design vector x. Often they are derived directly from basic

equations and laws of engineering science. However, basic engineering principles are not -

always capable of describing the problem completely, so use of empirical or experimental

data must be available to establish the relationships through curve-fitting of data or other

means. In addition, there exists a possibility that the functions may involve complex

procedures that may be realized by computer simulation models rather than equations.

In general, more than one objective function is possible. Thiese objectives may

sometimes be competing so that some compromise is required. The mathematical tools

necessary for handling multi-objective models are rather specialized and not particularly

useful for practical design problems. Multiobjective strategies will be presented in Section

C.6.

"It is not always easy to decide whether a design characteristic should be associated

with the objective or with constraint functions." [Ref. 2] For example, in the design of a0
circuit board a design engineer may be confronted with the problem of which design

characteristics, such as cost, reliability, routing, etc., should be made the objective of the -

model. The reply might well be "none of them," as long as they all meet certain design
specifications. However, if a description of how these characteristics affect the overall i

performance is considered, then one may begin to question the rigidity of the
specifications, or may decide that they all should be considered in the objective function of

the model.

3. Classification of Design Optimization Models

The vast majority of the design optimization models can be described in the fr
standard form of Equation 2. The existence of such a standard form does not imply that all
distinctions between models should be ignored. When faced with a design optimization

model, it is usually advantageous to determine the special characteristics that allow the
model to be solved more efficiently. The most extreme form of classification is to assign

every model to a separate category. However, this approach would be based on the false

premise that every difference is significant with respect to solving the model. A reasonable

classification of design optimization models is as follows:

(1) Classification based on the mathematical characteristics. A classification J. %
scheme based on the dimensions of the design space and the nature of the
functions has a significant algorithmic advantage. A typical classification is

N. -~

3
'a0

&L%

Properties of x: one-deminsional, multi-dimensional

Properties of f(x): continuously differentiable, twice-continuously
differentiable, linear, nonlinear.

Properties of h(x) and g(x) (constraints): no constraints, linear, nonlinear, 9
continuously differentiable, twice continuously differentiable.

(2) Classification based on the nature of design variables, which includes discrete,
continuous, deterministic, and stochastic variables.

4. Feasibility and Critical Design Requirements

A problem that has been well-posed will have a solution and most often it will have -

more than one feasible solution, so that one may be selected as the optimum. A feasible

solution is one that satisfies the constraints of the design optimization model. A problem is
said to be well-posed in this context if it implies that the solution makes sense from an

engineering point of view. Some possible difficulties in formulating a well-posed problem

are the emptiness of the feasible domain, which implies that no acceptable design exists, or
unboundedness of variables, which implies that no finite values of the design variables that

make sense from an engineering design point of view yield an optimal solution to the

model.

Once the feasibility of the model is addressed, the next task is to identify the critical

design constraints. Loosely speaking, an active or critical constraint is one that would

change the location of the optimum if removed from the model. For inequality constraints

this means that they must be satisfied as a strict equality at the optimum. A critical

constraint (or design requirement) is also referred to as an active constraint. Identification
of active constraints is important in design optimization because they often are associated
with the failure modes of the design. In fact, some traditional design methods were really

primitive design optimization in that failure modes were considered critical a priori. This
was usually done relative to some often hidden criterion. Essentially, a design problem .

was solved by assembling enough active constraints to make a system of n equations of the

n unknowns of the design variables [Ref. 1].

A non-critical or inactive constraint is defined as one whose presence defines the

feasible domain but that plays no role in the location of the optimum.

-. i
S., S. ~ * '.J S.-'- %~4

5. Multistage vs. Multilevel Decomposition

The successful design optimization of complex systems invariably involves

decomposition of the system into a number of smaller subsystems, each with its own goals

and constraints [Ref. 3]. The resulting interconnections of the subsystems generally take

the form of a multistage or multilevel decomposition. In the multistage decomposition,

design decisions are made sequentially at different stages so that the output of one stage is

the input of the succeeding stage. If the number of stages tends to infinity, the problem

becomes an infinite stage or continuous problem. In multilevel decomposition, the

interconnection of subsystems is of hierarchical form. In this approach, a given-level unit

controls or coordinates the units on the level below it and, in turn, is controlled by the units

above it.

Dynamic programming is a mathematical technique well suited for optimization of

multistage models. This technique was developed by Richard Bellman in the early 1950's

[Ref. 4]. The dynamic programming technique decomposes a multistage design problem0

into a sequence of single-stage design problems. Thus, an n-variable problem is

transformed into a sequence of n, single-variable problems that are solved successively.

The decomposition to n-subproblems is done in such a manner that the optimal solution of

the original n-variable problem can be obtained from the optimal solutions of the n one-

dimensional problems.

A different approach has recently been proposed by Johnson and Benson [Refs. 5,
6], where a design optimization model is decomposed into several modular components

and an integrating component. Modular components are solved sequentially and exactly.

The solutions of the modular components are then inserted into the integrating component

to obtain a solution that will be fed again into the modular components. This process is

repeated until it converges to a solution.

T'he basic steps of multilevel decomposition in design optimization are very similar I

A to the Dantzig-Wolfe approach [Ref. 1]. The method has a multilevel structure that breaks

down a problem. into several smaller subproblems which can be solved independently and .,

then coordinates each solution to obtain an optimal solution. A number of papers and

several books have been published on the subject of multilevel decomposition methods (see
for example, Lasdon [Ref. 8]; Wismer [Ref. 3]). Essentially, these methods are

combinations of the model coordination method and the goal coordination method.%

5%

In the model coordination method, the decomposition is made possible by adding

constraints to the mathematical model of the problem in the form of fixing variables in order
to coordinate the activities of the subproblems. The model coordination method is also

known as the feasible decomposition method due to feasibility of intermediate values of

design variables. The method is particularly attractive from an engineering design point of

view since the iteration process may be terminated whenever it is desired with a feasible,

though nonoptimal, design [Ref. 91.

In the goal coordination method, decomposition is made possible by modification

of the objective (goal) of the subproblems while cutting design variable links between
subproblems. This method is also known as the dual method since the upper-level problem

is the dual of the lower-level subproblems [Ref. 8]. A shortcoming of this method from an

engineering design point of view is the infeasibility of intermediate values of the design
variables. The iteration process must proceed until the optimum is reached.

6. Trade-off Curves and Sensitivity Considerations

Every design has a set of design characteristics that can be thought of as generating

a corresponding set of values. Thus, once a specific configuration is available, the

designer can set down a list of significant design characteristics and a list of significant

values. It frequently occurs in practice that there is more than one design characteristic tciat
generates values for the designer. They commonly oppose each other in the sense tha, if

one is changed to increase the design value, the other must be changed to reduce the valu,.

The choice of the best design is a trade-off between these design characteristics. For L,

given general configuration, a trade-off curve can be developed that is a locus of all .

optimum designs such that each point on the curve is a trade-off point [Ref. 2]. Trade-off

curves also can be thought of as a plot of optimum designs corresponding to variations in .

design parameters or assumptions. An analysis using these curves is called a sensitivity
analysis. Since this type of information is so important in implementing a solution on a real

system, in many cases, a detailed sensitivity analysis is more valuable than the actual

optimal solution itself.

The reasons for performing a detailed sensitivity analysis are given by Reklaitis,

Ravindray and Ragsdell [Ref. 101:

1. To determine the parameters to which the optimal solution is sensitive. If such
parameters exist, then it may be advantageous to modify the associated system
features. For example, if it is discovered that the solution is sensitive to the

6

availability of heat sinks (a constraint placed on the system in circuit board
design), then it may be necessary to increase the number of available heat
sinks.

2. To extract information about additions or modifications to the system for

improving the overall operation. Thus, one can obtain information on the
advisability of adding new production capacity or increasing intermediate
storage.

3. To clarify the effect on the system of variations in imprecisely known
parameters. Some model parameters may be subject to uncertainty. Sensitivity
analysis can indicate whether it is advantageous to allocate resources to obtain

better estimates of these parameter values. Alternatively, parameters that
initially appear to be critical may turn out to be unimportant and may not need

further refinement.

4. To suggest the effects of variations in uncontrollable external parameters. For
example, system inputs such as product demands may be outside the control of
the designer. Parameter sensitivity analysis can estimate the effects of product
demands on profits and hence allow the user to plan for a range of economic
returns.

C. CONCEPTUAL METHODS

This section begins with a discussion of the classical methods that are useful in

finding the optimum of continuous or differentiable functions of real variables. Under this

heading, optimality conditions for single-variable functions, and the extension of the

conditions to the multivariate case, are discussed. The next topic considered is

unconstrained methods, which are important because some methods of solving constrained ,

optimization problems are based on transforming these problems to unconstrained

problems (indirect methods). This is followed by a discussion of constrained optimization

problems, beginning with the linear case (linear programming methods and integer

programming) and continuing to discuss nonlinearly constrained problems, including

geometric programming Monotonicity analysis, multi-objective methods and multilevel

decomposition methods are then discussed, concluding with a section on artificial

intelligence (Al) related techniques.

The numerical methods presented here have gone through extensive analysis and/or

testing in the literature. While much research in design optimization remains to be done,

the field has matured to the point where the techniques can be applied to a large percentage

of design tasks. Numerical optimization provides us with a new design philosophy in that

7

a systematic approach to design decisions is provided; however, this should not suggest

that designer's intuition and experience are unimportant. In fact, in order to establish a true

design environment, the designer should be kept in the design loop (computer-aided) using

interaction and other means.

In presenting the materials of this section, extensive citations to various articles i
and/or books is given to avoid (as much as possible) mathematical and/or theoretical

discussions regarding various methods. Furthermore, attempts have been made to present

the subject from the pragmatic viewpoint of a design engineer.

1. Classical Methods (Optimality Conditions) Z
Here, "classical methods of optimization" means those which are analytical in

nature and use differential calculus techniques in locating the optimum points. In order to

apply these methods to any problem, the corresponding functions should have certain

properties such as continuity and differentiability (see Apostol [Ref. 11]). Although the
classical methods have limited applications, the study of these methods forms the basis for

developing most of the numerical methods presented in the subsequent sections.

The classical methods are basically a set of necessary and sufficient conditions

(optimality conditions) that should be satisfied by an optimum in order to be accepted as a

solution. The treatment of some of these methods goes back several centuries, hence the
name classical.

Fermat was the first person to propose the optimality conditions for single-variable

functions during the seventeenth century. Although Fermat's method seemed to be.
logically inconsistent, it was extended by Euler to multivariable functions and later by
Lagrange, who contributed greatly to optimization theory. Fermat's contradiction was

fnlyremoved when Cauchy defined the concept of "limit" [Ref. 12]. .4
In the last 50 years, substantial progress in the theory of optimization has been

made. The most important advance gives the optimality conditions for constrained
problems, the so-called Karush-Kuhn-Tucker [Refs. 13, 14] conditions.

The necessary conditions of optimality refer to those conditions that an optimum
point must satisfy. However, it is possible that a nonoptimal point also satisfies the

necessary conditions. For this reason, a point that satisfies the necessary conditions is

often called a stationary point. The nature (maximum, minimum, etc.) of a stationary point
is determined then using the sufficient optimality conditions.

8

* •

Several topics on the question of optimality conditions can be found in the literature

[Refs. 15, 16], each topic being characterized by the assumptions made on the functions

involved. The optimality conditions stated by most of these topics relate in one way or

another to the concept of Lagrangian, which can most conveniently be treated, without the

loss of much generality, if the objective and constraint functions are differentiable.

Relaxing the differentiability assumptions usually leads to optimality conditions that can

best be expressed as optimality conditions on some other problem, such as finding a

saddlepoint of a Lagragian or solving a so-called dual problem.

It should be noted that in the design optimization problem, the most often sought

solution is the global solution. If the problem has more than one local optimum (local S

solution) the global solution often requires determining all the local optima, evaluating the

objective function at each optimum, and choosing the global optimum. 1 (Most of the

theory and computational algoithms available are for determining local optima, unless the

problem has only one local optimum in which case the local and the global opitmum are the S

same.) However, if all of the local optima cannot be determined, despite all of the efforts,

then the global optimum could be missed.

In the following sections, a selection of many methods available for various

problem categories is described. The description is intended to present an overview of S

those methods that are popular. The cited references may be consulted for further

information about those, and other, methods.

2. Unconstrained Methods

a. One-Dimensional Methods

An unconstrained design optimization problem in which the objective function is a

function of only one variable is the most elementary type of problem. Yet, it is of central 0

importance, not only because it is encountered very often in engineering design problems,
but also because it arises commonly as a subproblem within the iterative procedure of

multivariable optimization problems [Ref. 10].

The one-dimensional numerical methods described in the literature may be classified
into three categories: (1) region elimination methods, (2) polynomial approximation

1 For cenain functions, such as convex functions, all local optima are also global optima.

9

methods, and (3) derivative-based methods. All of these methods require that within the

domain of interest the objective function be unimodal. When this happens, the objective

function has a unique minimum within the domain of interest. Of course, in many

engineering design problems the unimodality assumption does not hold true, and, in any

case, it cannot be easily verified. One way to handle this difficulty, especially if the initial

domain of interest is large, is to divide it into smaller intervals, find the minimum over each

subinterval, and then select the smallest of the minima over the subintervals.

The region elimination methods are based on successive elimination of regions

where the optimum is not located. In general, these methods have two phases [Ref. 10].

1. The Bounding Phase is an initial coarse search that will bound the optimum.

2. The Interval Refinement Phase is a finite sequence of interval reductions to O
reduce the initial search interval to a desired accuracy.

Several region elimination methods have been discussed in the literature, including

the Golden Section, Fibonacci, Dichotomos, and Uniform methods [Ref. 16]. These

methods do not use the information about the derivative [Ref. 11] of the function. Hence,

they are applicable to both continuous and discontinuous functions and to discrete variable

problems.

Polynomial approximation methods require that the functions be sufficiently 7z
"smooth" (see, for example, Apostol [Ref. 11]). The basic motivation is that if the

function is smooth, it then can be approximated by a polynomial, and the approximating

polynomial can be used to predict the location of the optimum. The only requirement for

these methods to be effective is that the function in question be continuous and unimodal.

The polynomial approximation usually is in the form of a quadratic, such as in Powell's
method [Ref. 17] which is a successive quadratic approximation method and Davidon's

method [Ref. 18] which is a cubic interpolation method.

If the objective function in question is differentiable, then further efficiencies in the

search method for the optimum could be achieved using the derivative-based methods such
as Newton-Raphson, Bisection, and Secant, and the quadratic and cubic approximation

methods [Ref. 10].

It should be noted that from a theoretical point of view, the polynomial

approximation methods (derivative and nonderivative-based), such as quadratic and cubic

search methods, are superior to region elimination methods. This claim seems to be

supported by the limited computational experiments presented by Himmelblau [Ref. 19]. _4

10 N

Kb. Multidimensional Methods

Many engineering design problems require that the minimum of some function of

several variables is found where no restrictions are imposed on the variables [Ref. 20].

Methods for solving this type of problem are the subject of this section. These methods in

general have three components [Ref. 16]:

(1) Find the direction of search for the optimum.

(2) Move in this direction as much as improvement in the objective function is
possible (one-dimensional search).

(3) Determine when the process has converged to an acceptable solution.

Methods for multidimensional, unconstrained design-optimization problems are
classified according to their need for derivative information about the function to be
optimized. They are classified into: (1) zero-order methods, (2) first-order methods, and

(3) second-order methods [Ref. 20].

The zero-order methods are those that require function values only to obtain the

optimum. They are generally easy to program and reliable in practice for the general types

of functions encountered in design problems. However, the price paid for this generality is

that these methods often require numerous function evaluations to reach the optimum.

Hence, they'are not useful for problems when the function evaluations are computationally
expensive. Among the methods in this category are [Refs. 20, 16]: the Complex method
and the methods of Rosenbrock, Powell, Box, and Hooke and Jeeves. This short list is
by no means exhaustive, but serves to indicate the existence of a variety of algorithms for
the zero-order methods.

First-order methods use derivative information to find a direction toward the

optimum. These methods should perform better than the zero-order methods simply

because the designer is provided with more information on which to base the optimization 0

decisions. One of the oldest of these methods is the one credited to Cauchy [Ref. 21].

This method, which is also called the steepest descent method, usually does not perform

well for some design problems as it approaches the optimum [Ref. 16]. The conjugate

direction of Fletcher and Reeves [Ref. 22] requires a simple modification to the steepest

descent method and yet dramatically improves the efficiency of the optimization process.

Perhaps the most efficient methods among the first-order methods are the so called variable
metric methods, such as Davidon-Fletcher-Powell or DFP [Refs. 23, 24] and Broyden-

Fletcher-Goldfarb-Shanno or BFGS [Refs. 25 through 28]. Currently, there is a S

11

significant amount of work underway to use the variable metric methods in constrained and

even large-scale problems. This research will be further discussed in Section F. 1 of this

report

In the second-order methods, the matrix of second derivatives of the function,

which is called the Hessian matrix, is used for the search toward the optimum. Newton's

method together with its various modifications are among the most effective methods in this r

category. The principal difficulty with some of these methods, despite their high

performance when applicable, is that they may have a singular and indefinite Hessian

matrix. Further, they may not have the general descent property, which is desirable for

these types of methods [Ref. 10].

Numerical experiments published in the literature suggest that BFGS, DFP,

Powell's method, and various modifications of Newton's method are among the most

successful multidimensional methods available in the literature [Refs. 18, 19, 29].

3. Linearly Constrained Methods

Linearly constrained problems are those in which the functions h and g of Eq. 1 are
linear functions of the design variables. Some basic methods of solution for these types of
problems are given below.

a. Linear Programming Methods

- The most thoroughly developed and understood optimization problem is the linear

programming problem. However, most engineering problems of practical interest are not

of this form. Therefore, in numerical optimization the study of linear programming is

usually overlooked in favor of the methods that are applicable directly to nonlinear

problems. However, an understanding of linear methods is important for two reasons.

First, it may be possible to simplify a nonlinear problem into a linear one and then use theM
linear programming methods to solve it. Second, linear programming methods are often

used as the basis of the more complex nonlinear programming methods.

"The most common method for the solution of the linear programming problems is

referred to as the Simplex method. This method was developed by Dantzig in the late

1940s [Ref. 301. Computer codes based on this method are available on most computer

systems. These have usually been tested extensively and are highly reliable. The Simplex

method has been used to solve a r umber of military, economic, industrial, and societal

12

problems" [Ref. 20]. In fact, some of the programs written now can handle problems

consisting of several thousands of variables and constraints quite efficiently. In a 1976

survey of American companies, the Simplex method came out as the most often used

technique (74 percent) among all optimization methods [Ref. 3 1]. About one-fourth of the

computer time spent in 1979 on scientific computing was devoted to solving linear

programming problems [Ref. 32].

The Simplex. method operates on the boundary of the feasible domain by moving

from one vertex to the other while at the same time improving the objective function.

Roughly speaking, the complexity of the edges and vertices that define the feasible domain

grows exponentially with the size of the problem. For this reason, the Simplex method is

an exponential method in that the number of iterations required to reach an optimal solution

is an exponential function of the number of variables and constraints. Hence, the insight

that an algorithm operating in the interior of the feasible domain should avoid such

complexity was used by Karmarkar to develop a new and in some cases much more
efficient method of linear programming [Ref. 33].

b. Integer Programming

In all the methods considered so far, each of the design variables is permitted to

take any real (or fractional) value; however, there are certain practical problems in which

the fractional values of the design variables are neither practical nor physically meaningful.

previously and to round-off the optimum values of the design variables to the nearest

integer values. However, in many situations it is very difficult to round-off the solution

without violating any of the constraints. Frequently, the rounding of certain variables

requires substantial changes in the values of some other variables in order to satisfy all of

the constraints. Furthermore, the round-off solution may give a value of the objective

function that is very far from the original optimum value. All these difficulties can be

avoided if the optimization problem is posed and solved as an integer programmingI

When all of the variables are constrained to take only integer values in an

optimization problem, it is called an (all) integer programming problem. When only some

variables are allowed to take integer values, the optimization problem is called a mixedIE

integer programming problem. When all the design variables of the optimization problem

13

4

are allowed to take on values of either zero or one, the problem is called a zero-one

programming problem.

Among various methods available for solving the all-integer and mixed-integer

linear programming problem the cutting plane method of Gomiory [Ref. 451 and the branch

and bound method of Land and Doig [Ref. 46] have been very popular. An efficient and

interesting enumerative method was also developed for zero-one linear programming

problems [Ref. 47]. Very little work has been done in the field of nonlinear integer K

programming. One approach suggested in the literature is the so-called generalized penalty

function method [Refs. 48, 49].

4. Noialinearly Constrained Methods

This section deals with techniques that are applicable to the solution of general

nonlinearly constrained design optimization problems. The methods can be divided into

two broad categories--the indirect and the direct methods. In the indirect methods, the

original constrained problem is transformed into a sequence of unconstrained optimization .
problems. In the direct methods, on the other hand, the constraints are handled in an

explicit manner. Geometric programming for posynominals is also covered.

a. Indirect Methods

The idea of converting a constrained optiraization problem into a sequence of

unconstrained problems is very appealing, since unconstrained problems can be solved

both efficiently and reliably. Of course, it is hoped that only a few unconstrained

subproblems of moderate difficulty will be required to approximate the constrained solution

with acceptable accuracy. Three traditional approaches in this category are: (1) the exterior

penalty function method, which penalizes the objective function only when the constraints

are violated; (2) the interior penalty function method, which penalizes the objective function

as the design approaches a constraint from inside the feasible domain; and (3) a

combination of the interior and exterior penalty methods.

Barrier function methods are also used to transform a constrained problem into a

sequence of unconstrained problems by setting a barrier on the design point so that it

cannot leave the feasible domain [Ref. 16].

While the aforementioned methods are easy to implement, the ill-conditioning

involved in the penalty or barrier type of methods limits their utility for practical design

problems. However, by using information about Lagrange multipliers within these

14

L 111~ 7 4 ~V

methods, their performance can be substantially improved. In fact, Powell [Ref. 34] notes

that the use of penalty-type methods, which do not use the Lagrange multipliers, is obsolete

in practical optimization. Therefore, the augmented Lagrangian methods (or methods of
multipliers) that use the information about the Lagrange multipliers are considered to be

substantially superior to the penalty and/or barrier methods [Refs. 20, 161.

b. Direct Methods

In this section, those methods that deal directly with the constraints are described.
Methods in this category are: (1) heuristic search methods, which are intuitive and do not
have much theoretical support, such as the random search and complex methods; (2)

constraint approximation methods, which approximate the objective function by quadratic
or linear functions and the constraints by linear functions; and (3) the feasible direction

methods that produce an improving succession of feasible designs. Attention here will be
focused on those methods that fall in classes (2) and (3).

Among the most efficient methods in class (2) are the sequential linear
programming (SLP) and sequential quadratic programming (SQP) methods. In the

sequential linear programming, linear approximations to the objective and constraints are
made about the current point. Then, the resulting linear programming problem is solved.
The process is repeated successively, until the solution to the original problem is obtained.
The method also is referred to as Kelley's cutting method [Ref. 35]. In the sequential

quadratic programming method, the objective function is approximated by a quadratic
function and the constraints by linear functions at the current point. The resulting problem _
.(a quadratic programming problem [Ref. 36]) is then solved by finding a search direction.
Having determined the search direction, the current design is updated by minimizing a
combination of objective function and current constraints' violation [Ref. 37]. Currently,

SLP and SQP are considered among the most successful algorithms in nonlinearly

constrained design optimization methods [Refs. 38, 39].

In class (3), the feasible direction methods, the nonlinearity of the design problem

is dealt with directly. A subclass of these methods is the gradient projection methods [Ref.
40]. One of the main advantages of these methods from an engineering design point of
view is that the generated intermediate design point is feasible. Hence, the iteration process

may be terminated whenever desired with a nonoptimal, but acceptable, design.

The method of feasible direction was first presented by Zoutendijk [Ref. 41 and

modified by various people, including Topkis and Veinott [Ref. 42], to improve its

15

convergence properties. Another method in this class depends upon reducing the

dimension of the design problem by representing some design variables in terms of an

independent subset of the rest of the variables. This is the reduced gradient method, which

was first developed by Wolfe [Ref. 43]. The method was later generalized (generalized

reduced gradient, GRG) by Abadie and Carpentier [Ref. 44]. In GRG the inequality

constraints are handled either by explicitly writing these constraints as equalities or by the

concept of active set strategy (see, for example, Gill et al. [Ref. 18]). If an active set

strategy is employed, then at each iteration the active constraints must be estimated and their

linearization added to those of the equalities. Proper steps in case of infeasibilities should

be included to locate a point satisfying both active and inactive constraints. Wilde and

Beightler also developed their differential algorithm based on the constrained derivatives.

[Ref. 12] This method employs much the same theoretical basis as the GRG method.

c. Geometric Programming

Geometric programming is a relatively new method for solving a particular type of

nonlinear programming problem. The method optimizes functions that can be expressed as

posynomials subject to posynomial constraints. A posynomial is a polynomial with

positive coefficients and variables and real exponents. Geometric programming is distinct

from other optimization techniques in its emphasis on the relative magnitudes of the various

terms that make up the objective function rather than the variables. Other methods find

optimal values of the design variables first, whereas geometric programming first seeks the ,

optimal value of the objective function. This has a particular advantage in cases where the

optimal value of the objective function is all that is of interest, i.e., where the explicit

calculation of the optimal design vector may be omitted. Furthermore, geometric

programming can often reduce a complex optimization problem to a set of simultaneous

linear equations. On the downside, the primary drawback of geometric programming is

that it does require that the problem can be formulated in terms of posynomials.

The basis of geometric programming is the general arithmetic mean--geometric

mean inequality (sometimes called Cauchy's inequality), which states that for any n ,

nonnegative numbers xl, x2,...,xn

xI + x2 + ... + xn ln -> (X 2* '''. d /

with the equality holding only if xl=x2= ... =xn. Using the inequality, the objective

function is rewritten and becomes the subject of the inequality. The original objective

function, having a form similar to the left-hand side of the inequality, is then called the "

16

p

primal function. Its transformed version on the right-hand side is called the dual function.

The result is that the maximum of the dual function equals the minimum of the primal
function. The optimization proceeds by minimizing the primal or maximizing the dual,
whichever is easier. Furthermore, the maximization of the dual, subject to orthogonality
and normality conditions, is a sufficient condition for the primal function to be a global
minimum.

5. Monotonicity Analysis

For a design engineer who is examining a problem, the location of the optimum is
only one of the goals to be attained. Specific insight, possibly provided to the designer, is

another goal. Therefore, it is important to develop a clear understanding of the critical
design requirements (active constraints). Monotonicity analysis is an optimization
technique that provides such information. It may be applied to design problems with
monotonic properties--a situation very common in design problems [Ref. 50]. In such
problems, the objective and constraint functions are monotonic with respect to a variable in
a certain range of that variable. Based on certain necessary rules derived at the optimum,
the designer may be able to detect which constraints are critical (active). For inequality
constraints, this means that they should be satisfied as strict equa!ities at the optimum.
Information about activity and/or inactivity of the constraints is important for a design 7-F

engineer because it can be used to identify what gains could be achieved if the boundary of
the feasible domain were modified, which in turn would point out directions for desirable

technological improvement.

Monotonicity analysis was first presented by Wilde [Ref. 51]. The motivation for
the method came from the fact that numerical optimization techniques may give only a
limited insight into underlying design principles for a given problem and that there may be
certain mathematical properties in design problems which otherwise may be exploited. 0

Wilde later applied monotonicity analysis to a number of design problems to identify their

global solution [Ref. 49]. Papalambros and Wilde [Refs. 1, 52, 53] have applied the
monotonicity analysis to many engineering design problems. Implementation of the
monotonicity analysis in a computer algorithm was first demonstrated by Zhou and Mayne
[Ref. 541 in an interactive manner. A fully automated version of the method was developed
by Azarm and Papalambros [Ref. 551 and Zhou and Mayne [Ref. 56].

17

0

VV LV6

6. Multiobjective Methods

a. Multiple Objective Problems

The complexity of engineering design situations dictates that there is often more

than one objective. Alternative designs in these cases must be evaluated according to

multiple criteria. For these reasons, extensions to single objective methods have been

created to deal with the multiobjective problem. For Unified Life Cycle Engineering, the

multiple objectives include cost, schedule, performance, producibility, supportability, and '

others.

The ideal way to solve a multiple objective problem would be to determine the

decision maker's utility function U as a function of the various objective functions and then

to solve the single objective optimization problem with U as the single objective. The

difficulty with this approach is that of determining the utility function and its specific

dependence on the objectives. The alternative is to search the space of tradeoffs among the

U individual objectives for an optimal solution. Since the trade-off space is generally very

large, the practice has been to use interactive man-machine procedures to solve this type of

problem. • t

A solution is optimal if it maximizes the utility function. In order to be optimal, its -'

criterion vector (made up of the objective functions) must be non-dominated. That is, it

must not be possible to find a feasible point that increases an objective without decreasing ,

at least one other objective. A point in the set of feasible solutions is called efficient or

Pareto optimal if it corresponds to a nondominated criterion vector. Near-optimal solutions
may satisfy the decision maker. Any solution, whether optimal or near-optimal, that

successfully terminates the decision process is called a final solution.

The following sections give brief overviews of several of the more important , .

classes of methods for multiobjective optimization.

b. Multiobjective Linear Programming "

One method in Multiobjective Linear Programming (MOLP) is the point estimate ".
weighted sums approach. In this method, each objective is multiplied by a strictly positive

scalar weight. Then the weighted objectives are summed to form a composite or weighted- .

Sums objective function. The weighting vector is normalized so that its elements sum to '

one. Then the linear programming approach is used to maximize the composite objective

function. From this, it is hoped that an optimal solution will be found, or one that is near

18

enough to the optimal to be satisfactory. The point estimate weighted-sums technique can

be viewed as a method that varies convex combinations of the objectives.

Optimal weighting vectors are difficult to estimate because the set of optimal

weighting vectors is a function of the decision maker's preferences, the relative lengths of

the objective function gradients, and the geometry of the feasible region. Another problem

with the use of weighting vectors is the correlation between objectives, which can cause

suboptimal results. A further difficulty in MOLP is the need for consistent scaling of the

objective functions. Three approaches to rescaling are (1) normalization, (2) using 10

raised to an appropriate power, and (3) the use of range equalization factors.

In MOLP, if one or more of the objectives are linear fractional, 2 the technique of

Multiple Objective Linear Fractional Programming (MOLFP) is used.

c. Goal Programming

Goal programming is an important area in multiobjective optimization. The basic

idea is to establish a goal level of achievement for each criterion. This method is

particularly well suited to criteria for which threshold values of achievement are significant.

Goal programming is different from linear programming in the following ways.

* Objectives are thought of as goals.

" Priorities and/or weights are assigned to the achievement of goals. .*

* Deviation variables are used to measure over- or under-achievement of the
target values

* The weighted sum of the deviation variables is minimized to find the best
solutions. , .

Rarely will one feasible point satisfy all the goals, so points are sought which

satisfy all goals as closely as possible.

d. Interactive Procedures '

One of the strongest areas of current development in multiobjective optimization is %

in interactive procedures in which the feasible region is explored for an optimal or near

optimal solution. Interactive procedures alternate between phases of decision making and

phases of computation. There is a feedback between the user and the model that enables

2 An example of a linear fractional function is g =x""

cx+d

19

S.2-

f l aaana~f~nn..w.3r~fl~gflwWUV ME. flW21 ups MMsf up WIN f, NL Xn .n-.,... .

the user to gain insight into the problem. These methods enable the user to make

midcourse corrections to the solution search process.

There are a number of interactive procedures available. They can be generally

classified as feasible region reduction, weighting vector space reduction, criterion cone

contraction, and line search. Although very different in approach, these algorithms all

show quite rapid convergence--in approximately n iterations, where n is the number of
objectives.

7. Multilevel Decomposition Methods

Since the publication of Dantzig and Wolfe [Ref. 7], there have been numerous

pieces of literature describing algorithmic development and/or application of decomposition

in design optimization. More recently, many engineering problems have been solved using
decomposition methods including those in mechanical [Refs. 5, 6, 57, 58]; structural

[Refs. 9, 591; and aerospace design [Refs. 60, 61].

There are several reasons why a multilevel decomposition method should be used to
obtain the optimal solution to an engineering problem. First, many engineering problems

are, by their nature, decomposable to several subproblems. For example, an aircraft is a

complex system composed of several subsystems including the structure, engine, landing

gear, etc. Using a two-level decomposition, each subsystem may be optimized at the first
level, and then the subsystems' solutions are coordinated at the second level to obtain the

optimal solution of the original problem which is the aircraft. Second, the interdisciplinary
nature of decomposition methods forces even more interaction across disciplines. [Ref.

62]. For example, optimal design of an aircraft may be obtained by analysis of its engine,

aerodynamics, structure, material, etc., independently and then these analyses may be

integrated using a decomposition-based optimization. Third, it may be more effective to
use different specialized optimization techniques for various subproblems. Finally,
multilevel decomposition methods fit well into distributed or even parallel processing

capabilities, which are typical of a modern computing environment.

The idea of decomposition for solving nonlinear systems (in particular, large-scale

systems) was first proposed by Kron [Ref. 631. He indicated that "physical systems with a

very large number of variables (say, with tens of thousands) may be solved with available

Howeeras as entone beore itwasthepublication of Dantzig and Wolfe [Ref. 7]

thtiiitdteetniework on this method in design optimization.

20

....

Azarm. and Li [Refs. 64, 65] have recently extended the model coordination method

by coupling it with the global monotonicity analysis. In their method, the monotonicity
analysis is used in the first level of a two-level decomposition method to identify the active

constraints. This information is then sent to the second-level problem, which in turn finds

a new point for an improved objective function. The new point is then sent back to the first-
level subproblenms, and the iteration process continues until an optimal design is obtained.

More on system-level optimization can be found in Section C of Volume II of this

report.

8. Artificial Intelligence (AI) Methods in Design Optimization

a. Issues in Design Optimization

The use of Al optimization techniques in the design process is based on the

premises that successful implementation of numerical algorithms requires the application of

heuristics and that the design process can be improved by the use of heuristics based on

knowledge captured during the iterative process [Refs. 66-70]. Associated with the first

premise is a knowledge structure that represents attributes about classes of design problems

and about optimization results accumulated over a period of design times. Associated with
the second premise is a knowledge structure that generates decision support data during the

iterative process of a particular design optimization problem.

No single optimization procedure can efficiently solve all classes of problems.

However, by monitoring characteristic responses from an optimization procedure or from0
different classes of problems, rules can be developed to select the appropriate algorithms to
solve a particular problem or part of a problem. For example, the degree of linearity
(nonlinearity) and constraint information can be used to select the type of optimization

approach to be applied. The selection of a starting point is another parameter which can be
intelligently selected based on previous experience. Both the feasibility of the starting point

and the closeness of a current design point to violating a constraint can be useful

information. Details of other characteristics will be discussed later.P

Al capabilities can also be included to examine the efficiency of an algorithm within

the iterative design cycle. This examination may result in parameter adjustment or even in

the selection of a new starting point, depending on the pattern (trend information) of the
data during iteration. Often, an improper starting point converges very slowly (as noted by
a fixed design status) to the goal region in the design space. A change in the convergence

21

criteria may also be necessary. This is an important consequence of the optimization

technique employed, but it also can occur due to round-off, truncation, etc.

In general, it is possible to calculate data in a bounded region using global

information. Data from each iteration is saved to provide knowledge about the problem,

and it can aid in parameter selection. Since functions of the problem depend implicitly on

design variables, the function evaluations are tedious and time consuming. Similarly,

gradient evaluations are complex and generally require special purpose algorithms. In fact,

during the design optimization cycle, most of the computational effort goes to function and

gradient evaluation. Thus, checks to identify anomalies in the gradient calculation of cost

and constraint add to the optimization efficiency.

Constraints also can be examined to determine whether they correspond to a

feasible design solution. It is necessary that constraints that cannot be satisfied be

identified early in the optimization planning stage.

b. Utilization of Knowledge in Optimization

Design optimization requires knowledge types that correspond to knowledge

domains in the Al sense. An appreciation for this fact can be gained by recalling the

decisions and tasks necessary during an optimization study.

Development of a good model requires engineering knowledge about the specific

problem and mathematical knowledge about its properties and possible methods of

solution. The following modeling tasks have been identified

* Examine the consistency, boundedness and feasibility of the model

" Define all useful transformations I
" Develop procedures to handle discrete variables

* Develop procedures to handle scaled variables and constraints

* Check for redundant constraints

* Determine the mathematical form of the model

* Determine the need for parametric or sensitivity analysis.

Once the model has been selected, the development of a solution strategy must be

considered. The following tasks have been identified:

* Determine the numerical methods

" Define program parameters (e.g., step size, accuracy, penalties, termination)

22

0 Determine the global or local solution and the criteria for accepting a solution

0 Determine the active constraints

* Define an error trapping, identification, and alternative methodology scheme.

All of these tasks can be addressed automatically (or at least interactively) with a

computer. The answers may require a high degree of programmed expertise and
computational analysis, but the knowledge to handle these questions generally exists.

It is apparent in engineering optimization that the analyst must be an expert both in

the technology of the model and in the mathematics of the optimization techniques. ALI offers a means to simplify the task, thereby encouraging wider and more correct use of
optimization. From the AI viewpoint, two problem categories can then be identified:
problem-solving techniques and knowledge engineering.

Problem-solving typically represents graph-type searches similar to those found in

I operations research. One approach is the production system that utilizes condition-action
pairs, usually of the form: IF (precondition), THEN (action), commonly called production
rules. A production system is characterized by a knowledge map, production rules, and a

control strategy.

The problem-solving process is described by movements in a state space. The

knowledge map contains information representing the possible states of a problem. A goal

state is set to represent the desired result of the problem-solving process.

Production rules are the means by which a given state is changed to another one,

closer to the solution. The rules are independent, but they all communicate to affect the

knowledge map. As data is changed, the map reflects the change, and the system may be

updated in the form of new rules.

The control strategy provides the order in which the rules are applied to the
knowledge map. This typically leads to a heuristic graph search, the nodes being the

various states.

The task of formulating and incorporating design rules as knowledge is complex.
However, it is necessary to establish models for design rule development that can serve as

a basis for the establishment of further rule development. Some simple rules have been
listed in the research of Arora and Baenziger [Ref. 67]. The rules represented there pertain

to active constraint instability, where there is conflict, in an attempt to move the search
direction normal to the constraint in question while improving the objective function value.S

23

Other representative production rules also have been identified by Li and Papalambros

[Ref. 7 1]

c . A Methodology For Knowledge Processing

Optimization methods have been applied to many engineering design as well as

operation research problems. When one or more of the objective or constraint functions is

nonlinear, then, we have encountered a nonlinear programming (NLP) problem. The

solution strategies for NLP problems generally utilize techniques that are based on localAl

information. For example, in one class of gradient-based techniques, the partial derivatives

of the objective and constraint functions at the current point are calculated (local

information), and the direction of minus the gradient of the objective function (or the

reduced gradient of the objective function, if there is any equality constraint) then is used to

obtain the next point while satisfying the constraints. However, the information provided

by the gradient is based on the linearization of the functions at the current point (local

information), and may not describe the behavior of the functions completely (incomplete

information). Moreover, performance of the optimization technique may be deteriorated by

poor selection of various parameters, e.g., difference parameters for numerical

differentiation, penalty parameters for penalty methods, initial multipliers for multiplier

methods, etc. Therefore, while the algorithm adequately solves one class of problems,

unless there is extensive tuning by the user on the algorithm it may perform poorly on

others. This difficulty has led to a general belief the industry that only experts in design

optimization can apply optimization techniques.

A coupled algorithmic-heuristic approach to the solution of nonlinear programming

problems goes beyond the traditional optimization techniques. A description of the

approach together with its major features is presented in Appendix A.

D. INFORMATION REQUIREMENTS FOR PRACTICAL APPLICATION

1. Selecting a Method

Once an engineering optimization problem has been formulated, the designer must

choose a method of solution. (This section follows Gill, et al. [Ref. 18].) This choice is ~

based on the classification of problems according to the properties of their objective and

constraint functions. The selection of the solution method also will depend on other

24

information available to the engineer, such as primarily knowledge of the derivatives of the
problem functions and the availability of appropriate computer software and hardware.

Knowledge of the derivatives of the problem functions, particularly the exact first
derivatives, greatly enhances the reliability and decreases the complexity of the optimization

methods that may be employed. Similarly, it may not be cost effective to use the Newton-
type methods that depend on knowledge of the exact second derivatives when the cost of

computing the Hessian matrix is much greater than the cost of computing the gradient.
Thus there is a trade-off between the cost of obtaining derivative information and the

resulting reliability and accuracy of the solution methods.

a. Unconstrained Problems

For unconstrained problems with a small number of variables, the ranking of

methods with respect to the probability of obtaining an acceptable solution is as follows:

* Newton-type with second derivatives

* Newton-type without second derivatives

* Quasi-Newton with first derivatives

* Quasi-Newton without first derivatives

Conjugate-gradient-type with first derivatives

* Conjugate-gradient-type without first derivatives

* Polytope.3

This ranking can be used both for choosing a method to initially attack the problem and for

selecting an alternative if the first method does not provide an acceptable solution.

The utilization of second derivatives gives the Newton-type method its top ranking
because the second-order properties enhance algorithmic efficiency and yield qualitative
data about the resulting solution. The Hessian matrix, evaluated at the solution, can r-%
provide estimates of the conditioning and sensitivity of the solution while a quasi-Newton

approach may not give an accurate representation of the actual Hessian.

Finite differences of gradients may be used to provide approximations to the second]
derivatives, which can be very effective in Newton-type methods. However, in quasi-

Newton-type methods, the use of finite difference methods will alter choice of step-length

3 See Section I.B of Volume I of this report.

25

algorithms and change the termination criteria. The polytope method is the most unreliable
of the methods since it uses the least information about the objective function.-

When the number of variables in an unconstrained optimization problem is large,

the approach to determining a solution method is less clear than with the small-scale
problems. Both sparse-discrete Newton methods and conjugate-gradient-type algorithms
have been used successfully with these larger problems.

b. Linearly Constrained Problems

The methods listed above for unconstrained problems with smooth objective

functions can be adapted to linearly constrained problems. The relative ranking of methods

for the linear constraint case is the same as the ranking for the unconstrained case.

A significant factor in selecting a method and software to optimize a linearly

constrained problem is the size of the problem, i.e., whether it is sparse or dense. The

importance of the size factor stems from the historical development of software for the two

classes of problems. Software for sparse problems has been well developed commercially,
whereas software for dense problems has remained more in the university research setting.

This difference in development has resulted in a difference in user friendliness of the two

classes of codes, with the commercial codes being easier to handle.

However, numerical methods for handling dense problems have superior properties

due to better conditioning of the search direction and Lagrange multiplier estimates. For
very dense problems, null-space active-set methods will probably prove best. As the
problem increases in size, range-space methods become more attractive.

Often, objective functions are defined only in the feasible region. Outside the
feasible region, the values of the objective function may represent situations that have no

physical counterpart. The user may specify that the objective function be computed only in

the feasible region. To be certain of this, the user, in general must provide exact

derivatives. If the problem contains only inequality bound constraints, finite difference
approximations to first or second derivatives may be adapted so that the objective function

is calculated only in the feasible region.

26

IX.

c. Nonlinearly Constrained Problems

A number of the methods for nonlinearly constrained problems will produce

iterations of the objective function that are not necessarily in the feasible region. The user
must decide whether feasibility is necessary before choosing a method.

d. Approximations

If a user does not have access to a complete numerical software library or if the

library does not contain a routine for the specific problem of interest, then the user must

make do with what they have. In general, the user should choose a method that takes

maximum advantage of any structure that the problem exhibits.

If some of the first or second derivatives are missing, the user may select a scheme
that will approximate the missing derivatives. If the problem is nonlinearly constrained but

the available optimization routine is for smooth unconstrained problems, the constrained
problem may be transformed into a sequence of unconstrained problems by an augmented

Lagrangian method. Least squares methods may be used when there are no available

routines for solving nonlinear equations.

2. Assessment of Results

Optimization algorithms are plagued with two major drawbacks: (1) reporting a
failure to solve the problem when a solution has been found, and (2) reporting a solution
that is not a solution.

This situation makes it incumbent on the user to verify any information that the

algorithm returns, with regard to the validity of the solution, whether the information is

positive or negative. When a good algorithm satisfies the termination conditions, this

should mean that a close approximation to an optimal solution has been reached. However,
the user should verify that the algorithm has not terminated prematurely.

a. Unconstrained Problems

There are three conditions that should be checked when an optimization
algorithm has terminated at a point xm:

(1) norm {grad F(xm)} << norm {grad F(xo).

(2) the iterations preceding xm exhibit rapid convergence to xm

(3) the Hessian matrix (or its approximation) at Xm is well-conditioned.

27

Given that all three conditions are met, xrm is probably near the solution whether or not the

algorithm indicated a successful termination.

Condition (1) indicates that the optimization is probably successful if the norm of
the gradient of the objective function is much smaller at the candidate solution point than it
is at the starting point. This shows that xm is closer to a saddlepoint than xo.

Condition (2) is an effective check because many algorithms exhibit a rate of

convergence that is faster than linear in the neighborhood of the solution. S

Condition (3) is useful when the algorithm displays a linear or sublinear rate of
convergence near xm. This can be due to discontinuities in the second derivatives. If the

Hessian is well-conditioned, small discontinuities will probably not significantly inhibit the

rate of convergence. Consequently, the discontinuities are likely to be large enough to be

located and possibly eliminated.

b. Constrained Problems

Conditions 1-3, given above for unconstrained problems, can be generalized to
constrained problems by appropriate mathematical substitutions in both the linear and

nonlinearly constrained cases. When there are nonlinear constraints, condition (2) should

be modified further to include a check on the rate of convergence of the Lagrange multiplier

estimates.

When the Lagrange multipliers are zero or near zero, difficulties arise in judging the

validity of the solution. This is because the sign of the Lagrange multiplier for an active

constraint is essential in determnimng whether the candidate solution is optimal and in

showing how to move toward the optimum if the candidate is nonoptimal. When the

Lagrange multiplier is near zero, the algorithm may activate the wrong constraint and return

a candidate solution that is far from optimal. 1

Other difficulties arise if a Lagrange multiplier is exactly zero. The zero indicates

that, to first order, small changes in the constraint do not alter the objective function.

Resolution would require examination of higher order derivatives, which may not be

available. The zero value of the multiplier sometimes means that the solution would be the

same if the constraint was eliminated while in other situations elimination of the constraint

corresponding to the zero multiplier does alter the solution.

Good software will attack the near zero multiplier problem by eliminating and/or

perturbing the relevant constraints and checking the effect on the objective function.

28 r

Large Lagrange multipliers usually have an adverse effect on convergence and thus

need to be corrected. They can be corrected if they arise from poor scaling of the

constraints. A less likely possibility is present in some nonlinearly constrained problems in

which the Jacobian matrix of the active constraints is rank-deficient.

If a check of conditions 1-3 above do not yield convincing indications of the

optimality of the candidate solution, three options remain: alter the parameters of the

algorithm, employ a different optimization method, or change the problem.

In altering the parameters of the algorithm for a step problem, the easiest parameter

to alter is the step length accuracy. An approach for other problems is to start the algorithm

at a new initial approximation point that is not too close to the old initial point or any of the

points in the previous iterations. There are other parameter alterations which depend on the

specific method being used. Convergence to the same point after a parameter alteration

gives some increase in confidence that the point is the solution. Yet, when second

derivatives are not available, there may be repeated convergence to a point that has a very

small gradient, yet is not a solution.

The next step toward verification is using an alternative method and starting from a

different point. If even this does not work, the last chance is to reformulate the problem in

the hope that the difficulty was due to an improper formulation. '

c. Performance

Performance of optimization algorithms can be determined in two basic ways. One

is by theoretical analysis to check convergence rates and computational complexity. The

second is by actual testing of an implementation of the algorithm on a set of benchmark

problems. Theoretical approaches only yield estimates of real world performance, so

computational benchmarks are preferred. User-friendliness can only be assessed through

actually using the code in question.0

The Committee on Algorithms (COAL) of the Mathematical Programming Society '
and the National Bureau of Standards have led the effort to establish sound experimental

techniques to test mathematical programming codes. The performance measures used

include efficiency, user-friendliness, generality, robustness, capacity, and programming

quality.

291

E. CURRENT CAPABILITIES OF OPTIMIZATION SOFTWARE

1. Computing Advances

The advancing technologies in the computer hardware and software industries are

continuing to have a major impact on applications of mathematical optimization methods.

(Ths section follows Waren, et al [Ref. 7 1]). The increased performance of computers

makes it possible to solve additional and larger problems while reducing the associated

costs. Also, the advances make it feasible to include optimization routines in large user-

friendly application systems that require little familiarity with the optimization methods.

The increasing power and availability of microcomputers and personal engineering

workstations has greatly increased the potential applications of mathematical optimization

routines. Such machines can readily be used to solve medium sized (< 100 variables)

nonlinear problems. Furthermore, such machines are serving as intelligent input/output

interfaces to more powerful mainframes and supercomputers. This allows the users to

approach problems interactively instead of by batch processing, employ floppy or hard disk

files rather than magnetic tapes; see graphical, color-coded results on a graphics monitor;

and print or chart only what is really necessary.

Recent years also have brought significant advances in mathematical programming I

techniques such as in Successive Linear Programming (SLP), Successive Quadratic

Programming (SQP), related Lagragian methods, and ellipsoidal approaches to nonlinear

programming (NLP) for inequality constrained problems. Another advance has occurred
throgh he reaionof odeing ystms ithbuit-i NL rouine. Sch ystms llo
thouh hecraio o mdeig ysem wt bil-i NP oties SchsstmsalowV

the problems to be expressed in spreadsheet format or algebraically or are data driven.

The following sections provide a sample of nonlinear optimization software for

various classes of computers and sizes of problems.

2. Mainframe Software for Medium Size Problems

ADS: This is a library of optimization routines which includes penalty, augmented

Lagragian, SLP, SQP, and feasible direction methods. Within each algorithmic strategy,

the user chooses from several procedures for determining the search direction. ADS uses

reverse communication to return control to the user's program whenever new information

is needed on function or gradient values. This feature gives ADS great flexibility for

revision of strategies as the optimization progresses. ADS also interfaces with

30

NASTRAN, a finite element analysis code, so that engineers can couple simulation and

optimization.

EA3: This employs an ellipsoidal method for solving systems of nonlinear

inequalities. It cannot be used for equality constraints. The user is required to provide

bounds for all variables and routines for computing function and gradient values. Since no

other user input is required, the code is relatively easy to use. Because of the many -S

function evaluations performed by the code, it is somewhat slow. EA3 is written in

FORTRAN 77 for IBM and can be ported to other systems.

GRG2: This is an implementation of the Generalized Reduced Gradient algorithm.

It is coded in FORTRAN 77 and runs on many different computers. Users are required to

provide routines for evaluating objective and constraint functions. The code includes

numerical differencing capabilities so that user provision of a partial derivative routine is

optional.

NLPQL: This code is based on the Harwell routine, VF02AD, using the SQP

method. It is a Fortran subroutine requiring the user to provide a calling program as well

as routines to calculate the functions and their gradients.

NOC OPTIMA: This is a library of FORTRAN subroutines for nonlinear]

optimization problems. The library includes a variety of subroutines including an
unconstrained optimizer, a least squares solver, and constrained optimizers using SQP and,";

SUMT. The user is required to provide a calling program, routines for giving the objective

function and constraint values, and an optional routine for the derivatives.

OPT: This code is written in FORTRAN 77 and is an implementation of the GRG

algorithm. The user provides a calling program that dimensions arrays and fixes tolerances

and limits. The user also must give routines for evaluating the objective and constraint

functions. A partial derivative subroutine is optional.]

SOL/NPSOL: This code is a collection of FORTRAN subroutines implementing an

SQP algorithm. The user fixes limits and tolerances, provides a calling program, a routine

to evaluate the nonlin(tr constraints and their derivatives, a routine for evaluating the

objective function and its derivatives, and the coefficients of any linear constraints.

VMCOM: Like NLPQL, this routine is based on the Harwell routine VF02AD.

The user must provide a routine to give values for the objective function, the constraints,

and the gradients.

31

ILR

VMCW*D: This is a FORTRAN subroutine based on an SQP algorithm which

employs the "watch dog" method. The user provides a routine to evaluate the objective

function, the constraints, and the gradients.

3. Mainframe Software for Large Problems

These codes are capable of handling nonlinear problems with thousands of

constraints and variables.

CONOPT: This code is a sparsity-oriented implementation of the GRG algorithm,

with capabilities for dealing with multiperiod problems. It includes a sophisticated control

language for setting parameters and options, dealing with errors, and checking for model

errors.

MINOS 5.0: This is the most widely used code for large scale nonlinear problems.

It attacks large space NLP's through a sequence of linearly constrained problems. Each

problem in this sequence uses constraints that are linearized versions of the original

constraints. The nonlinear objective function is transformed into an augmented

Lagrangian. I

SCICONIC: This code employs an SLP method and the variable reduction concept

of the GRG algorithm. The nonlinear problem is formulated in such a way that the

variables are divided into three classes: nonlinear variables, linear variables with variable

coefficients, and linear variables with constant coefficients. At each iteration, they are

divided further into dependent and independent classes. The independent nonlinear
variables are varied with a conjugate gradient algorithm and the dependent variables are

calculated using a linear programing approximation.

SLP: This uses a Successive Linear Programming algorithm with a trust region

strategy employing an exact penalty function. It is particularly effective on problems with

vertex or near-vertex optima. Because it uses the method of steepest descents, it tends to

be slower than other codes in the case of numerous degrees of freedom at the optimum and

a state of well-conditioning.

4. Software for Microcomputers

GINO: This is an interactive nonlinear optimizer for the IBM PC and compatibles.

Its brother LINDO is a linear optimizer. GINO uses GRG2. For a PC with 256Kb
memory the problem size limit is 30 constraints and 50 variables as well as their bounds.

32

I r*

NLPROLOG: This IBM PC code is part of a set of programs for solving
mathematical programming problems. It uses a fixed point method for nonlinear problems

with provision for both differentiable and non-differentiable functions. The user provides
the functions and constraints through a BASIC text file or via FORTRAN subroutines. A

PC with 512Kb can handle problems with a maximum total of 150 variables and

constraints.

NLP SOLVER: This IBM PC code is based on the SQP method and can handle a

problem with 25 variables and 50 constraints in 256Kb memory.

OPTISOLVE: This IBM PC code uses a penalty method to transform nonlinearly
constrained problems into sequences of unconstrained problems which are solved with a
variable metric method. After a solution is returned, the code provides a performance index

between 0 and 100 to gauge the accuracy of the solution.

5. Modeling Systems

EMP: This system requires the user to be familiai with FORTRAN. It is used to

solve general nonlinear problems. EMP uses two solvers--NLPQL and an ellipsoidal
method similar to EA3. The limit on the problem size is a total of 100 variables and

constraints. It is a menu driven, interactive system that prompts the user for further
information. EMP includes facilities organizing problem specifications and results, which

include editing, adding, deleting, displaying, and sorting.

GAMS: The General Algebraic Modeling System organizes an optimization model
as several sets of equations. These equations are set up using an algebraic syntax that

allows the user to specify an indexed set of equations with a single GAMS statement.
GAMS uses NPSOL and MINOS 5.0 as its NLP solvers.

IFPS/OPTIMUM: This system employs a nonprocedural spreadsheet language
with each cell containing a rule for determining the value of the variable in that cell. The

problem is set up by specifying which cells contain the decision variables, the objective,

and the constraints. The user also provides bounds on the decision variables and
constraints. The system is able to determine whether the problem is linear or nonlinear, •

and sends this information to the appropriate solver. The solvers include GRG2 for
nonlinear problems, XMP for linear problems, and ZOOMIXMP for linear mixed integer

problems.

33 ~

-,.

F. RESEARCH NEEDS

In the following sections, current and future research areas in design optimization,

in particular the numerical methods, will be discussed. These sections are prepared based

on a report of the SIAM Activity Group on Optimization that was recently published in the
SIAM News (March 1987). The final section targets research areas in design optimization
for tradeoffs encountered in ULCE.

1. Current Research

Despite the fact that a wide variety of optimization methods have been developed

over the last decade, there a considerable gap exists between the breadth of the available
theory and the demands of routine application to meaningful engineering design problems.

Current research in numerical optimization techniques concentrates on the

understanding the unconstrained methods, the research has focused progressively on

constrained optimization. However, advances in constrained optimization have been

minimal compared with those for unconstrained. As advances in modeling techniques and I
computer technology allow industry to consider progressively more complicated models,
the need for advances in the constrained optimization techniques becomes increasingly 7

important.

The major part of research activities in unconstrained problems is on quasi-Newton

or variable metric methods in that they are based primarily on the properties of the quadratic
functions. In particular, the methods and convergence theories for BFGS and DFP
methods for unconstrained optimization are now well established and are becoming, more

or less, classic. The local convergence theory for the BFGS and DFP methods requires
that the Hessian matrix of the function being minimized be positive definite at the solution.
However, the global convergence theory for the BFGS and DFP methods does not seem to

be as well understood.

In extending quasi-Newton methods to constrained problems, the formulation of
the model subproblem presents no difficulty. It is a quadratic program in which the
Hessian of the quadratic objective function is the Hessian of the Lagrangian or a secant
approximation to the Hessian. This approach is the sequential quadratic programming

(SQP) approach to constrained optimization, as explained in Section 4.b. The difficulty in
extending the quasi-Newton methods to constrained problems arises from the requirement

34

of the local convergence theory for the BFGS and DEP: the Hessian of the Lagrangian

must be positive definite at the solution.

In unconstrained optimization, the standard assumptions coupled with the second

order necessary conditions produce positive definiteness. In the case of constrained

optimization, however, this coupling gives positive definiteness only on a proper subspace.

It follows that an approximation of the Lagrangian may not be able to be updated. Thus,

the constrained algorithm is not well defined. Numerous modifications have been

suggested for this problem, but none has been supported yet by convergence theory.

A major problem in constrained optimization is the choice of the merit function.

The merit function is defined as the function used to decide whether one approximate

solution is better than another. In unconstrained optimization the obvious choice is the

objective function. However, in constrained optimization, the merit function should reflect

the objective function and the constraints' infeasibilities. Choosing a merit function that

accomplishes this objective and meshes well with the direction calculated from the quadratic

programming subproblems is not an easy task, and the optimal one is yet to be found.

One area of research in constrained optimization that has no counterpart in

unconstrained optimization is the implementation of inequality constraints. Inequality

constraints have traditionally been handled by adjoining a squared slack variable to each

constraint. The design optimization problem then is formulated as an equality constrained

problem. If the SQP method is then applied, the quadratic programming subproblem willn
have only equality constraints. The problem can then readily be solved as a system of
linear equations. Although this approach is used successfully in many engineering design

problems, critics of this approach point out that not only does the dimension increase, but

also that the numerical conditioning deteriorates.

Two other popular approaches for handling inequality constraints in numerical

optimization are active set strategies and linearization of constraints. The active set

strategies divide the inequality constraints at each iteration into those that will be treated as
equality constraints and those that will be ignored. One way of accomplishing this is toI
treat constraints that are violated as equalities and to ignore those that are most satisfied.

Another way is to pick the active constraints based on the information provided by
Lagrange multipliers or other means. If the rules that are used to decide which constraints

should be considered active or ignored are simple, then "cycling" or "zigzagging" may

occur and convergence may be lost. In the linearization of constraints approach, the

35

Al

inequality and/or equality constraints are linearized by expanding them about the current

point using the first-order Taylor series.

Some research activity also has been directed toward solution strategies that

correctly identify the active constraints. Under certain assumptions, the SLP and SQP

methods have this desirable property.

2. Future Research

Problems that warrant additional research activity are those that have not yet been

solved for unconstrained, let alone for constrained, optimization. Included in this category

are algorithms for design problems in which the derivatives do not exist, for extremely

large problems, and for algorithms that can be efficiently implemented on multiprocessor

computers. The latter include multilevel decomposition methods applicable to a general

class of nonlinear design problems.

Since solution strategies for nonlinearly constrained optimization problems

generally result in a local rather than a global solution, research activity should be directed

toward global optimization methods. Current tools used in these methods are based on

such diverse areas as the physics of the problem, probability theory, and interval analysis.

The greatest activity in numerical optimization research will most likely continue 75

around Karmarkar's method for linear programming [Ref. 33]. Generalization of

Karmarkar's method to quadratic programming problems has received some attention, but

the proper generalization has not yet been found. Three possible research directions might

emerge. The first is a direct extension of Karmarkar's method to general nonlinearly

constrained design optimization problems. The second is in the development of an SLP

approach to nonlinear programming with Karmarkar's method used for the linear

programming subproblem. The third direction is an extension of Karmarkar's method to

quadratic programming with the development of a nonlinear programming method.

3. Importance of Research in Design Optimization for ULCE

Design optimization is at a rather critical phase because there is a need to carefully

examine its present conditions and future prospects. Although this volume of the report

has dealt thoroughly with mathematical and analytical techniques, the primary concern for .,

ULCE is to determine how optimization fits into the overall design process. The design

process itself is a highly interactive, coupled activity that requires quantitative, systematic,

36

&I WJ PEAAF A WLRXr 0

and analytical methods at all levels, from the identification of the need to the final testing
and evaluation. A systematic method for design should involve (see, for example, "Goals
and Priorities for Research in Engineering Design" [Ref. 72]):

0 Consistent multilevel representation of the systems being designed.

* Effective communication with the multilevel simulations developed for a design
problem.

* Decomposition or partitioning of a design problem into manageable segments4
witou sriusy ffctngthemitertyof the toaproblem.

0 Quantitative assessment of the manufacturability, reliability, controllability, andI maintainability of a product

* Mechanisms that expedite the search through exploration of the design
alternatives.

The emphasis for ULCE should be on the basic need that optimization by numerical

algorithms and other methods must be integrated within the whole design process. Of great
importance are the development and application of optimization techniques that help to V
systemize the trade-offs that are involved in the design of the complex systems, particularly

the following.

0 Decomposition-based optimization of engineering design problems should
have a high priority. Further, methods that can handle the hierarchical systems
with various structures, configurations, and interactions are highly desirable.

* Methods that allow explicit treatment of realistic constraints, as opposed to
implicit penalty functions, as well as the use of cost-objective functions, which

are more directly relevant to the performance of the systems, is needed.

T7hese issues are explored further and a plan for their research and development for

Research Directions.

37

0

REFERENCES

1. Papalambros, P., D. J. Wilde, Principal of Optimal Design - Modelling and
Computation, Cambridge University Press, New York, 1987 (in press).

2. Siddall, J. N., Optimal Engineering Design, Marcell Dekker Inc., New York,
1982.

3. Wismer, D. A., Optimization Methods for Large-Scale Systems, McGraw-Hill

Co., 1971.

4. Bellman, R. E., Dynamic Programming, Princeton University Press, 1957.

5. Johnson, R. S., and R. C.Benson, A Basic Two-Stage Decomposition Strategy in
Design Optimization, ASME Trans., Journal of Mechanisms, Transmissions, and
Automation in Design, Vol. 106, pp. 380-386, 1984a.

6. Johnson, R. S., and R. C.Benson, "A Multistage Decomposition Strategy for
Design Optimization," ASME J. of Mechanisms, Transmissions, and Automation
in Design, Vol. 106, pp. 387-383, 1984b.

7. Dantzig, G. B., and P. Wolfe, "Decomposition Principle for Linear Programs,"
Operations Research 8, pp. 101-111, 1960.

8. Lasdon, L. S., Optimization Theory for Large Systems, Macmillan Co., London,

1970.

9. Kirsch, U., Optimum Structural Design, McGraw-Hill, N.Y., 1981.

10. Reklaitis, G. V., A. Ravindran, and K. M. Ragsdell, Engineering Optimization,
John Wiley and Sons, New York, 1983.

11. Apostol, T. M., Calculus., Vol. II, Wiley, New York, 1969.

12. Wilde, D. J., and C. Beightler, Foundations of Optimization, Prentice-Hall, N.J.,
1967.

13. Karush, W., "Minima of Functions of Several Variables with Inequalities as Side
Conditions," MS Thesis, Dept. of Mathematics, University of Chicago, 1939.

14. Kuhn, H. W., and A. Tucker, "Nonlinear Programming," Proceeding of the
Second Symposium on Mathematical Statistics and Probability, University of
California Press, Berkeley, 1951.

39

15. Avriel, M., Nonlinear Programming, Prentice-Hall, N.J., 1976.

16. Bazaraa, M. S., and C. M. Shetty, Nonlinear Programming, Wiley, N.Y., 1979.

17. Powell, M. J. D., "An Efficient Method for Finding the Minimum oi a Function of
Several Variables Without Calculating Derivatives," Computer J., 7, pp. 155-162,
1964.

18. Gill, P. H., W. Murray, and M. H. Wright, Practical Optimization, Academic

Press, London, 1981.

19. Himmelblau, D. M., Applied Nonlinear Programming, McGraw-Hill, N.Y., 1972.

20. Vanderplaats, G. N., Numerical Optimization Techniques for Engineering Design,
McGraw-Hill, N.Y., 1984.

21. Cauchy, A., "Method generale pour la resolution des systemes d'equations
simultanees," Computer Rend. Acad. Sci., 25, pp. 536-538, 1847.

22. Fletcher, R., and C. M. Reeves, "Function Minimization by Conjugate Gradients,"
Computer J., 7, pp. 149-154, 1964.

23. Davidson, W. C., "Variable Metric Method for Minimization," AEC Res. Develop.
Rep., ANL-599, 1959.

24. Fletcher, R., and J. D. Powell, M. "A Rapidly Convergent Descent Method for
Minimization," Computer J., 6, pp. 163, 1963.

25. Broyden, G. G., "The Convergence of a Class of Double-Rank Minimization
Algorithms," J. of Inst. Math. Appl., 6, 76-90, 222-231, 1970.

26. Fletcher, R., "A New Approach to Variable Metric Algorithms," Computer J., 13,
pp. 317-322, 1970.

27. Goldfarb, D., "A Family of Variable Metric Methods Derived by Variational
Means," Math. Comput., Vol. 24, pp. 23-36, 1970.

28. Shanno, D. F., "Conditioning of Quasi-Newton Methods for Function
Minimization," Math. Comput., Vol. 24, pp. 647-656, 1970.

29. Sargent, R. W. H.and D. J. Sebastian, "Numerical Experience with Algorithms
for Unconstrained Minimization," Numerical Methods for Non-Linear Optimization
(F. A. Lootsma, Ed.), Academic Press, N.Y., Chap. 5, 1971.

30. Dantzig, G. B., "Programming in a Linear Structure," Comptroller, Wash. D.C.,
Feb. 1948.

31. Fabozzi, E. Land J. Valente, "Mathematical Programming in the American
Companies: A Sample Survey," Interfaces, 7(1), pp. 93-98, 1976.

32. Steen, L. A., "Linear Programming: Solid New Algorithm," Science News, 116,
pp. 234-236, 1979.

40

33. Karmarkar, N., "A New Polynomial-Time Algorithm for Linear Programming,"
Proceedings of the 16th Annual ACM Symposium on the Theory of Computing,
pp. 302-311, 1984.

34. Powell, M. J. D., "Optimization Algorithms in 1979," Committee on Algorithms
Newsletter, No. 5, Mathematical Programming Society, pp. 2-16, Feb. 1981.

35. Kelly, J. E., "The Cutting Plane Methods for Solving Convex Programs," SIAM

J., 8, pp. 703-712, 1960.

36. Murty, K., Linear and Combinatorial Programming, Wiley, 1976.

37. Powell, M. J. D., "A Fast Algorithm for Nonlinearly Constrained Optimization
Calculations," DAMPTP77/NA 2, University of Cambridge, England, 1977.

38. Sandgren, E., "The Utility of Nonlinear Programming Algoritms," PhD Thesis,
Dept. of Mechanical Engineering, Purdue Univ., 1977.

39. Hock, W. and K. Schittkowski, Test Examples for Nonlinear Programming
4 Codes, Springer-Verlag, New York, 1980.

40. Rosen, J. B., "The Gradient Projection Method for Nonlinear Programming," Part
I, Linear Constraints, SIAM J. of Applied Mathematics, Vol. 8, pp. 181-217,
1960.

4_. Zoutendijk, G., Methods of Feasible Directions, Elsevier, Amsterdam, 1960.

42. Topkis, D. M.and A. F. Veinott, "On the Convergence of Some Feasible Direction
Algorithms for Nonlinear Programming," SIAM J. Control, 5, pp. 268-279, 1967.

43. Wolfe, P., "Methods of Nonlinear Programming," Recent Advances in
Mathematical Programming (R. Graves and P. Wolfe Eds.), 1963.

44. Abadie, J., and J. Carpentier, "Generalization of the Wolfe's Reduced Gradient
Method to the Case of Nonlinear Constraints," Optimization (R. Fletcher Eds.),1969.

45. Gomory, R. E., "An Algorithm for Mixed Integer Problem," Rand Report, R.M.
25797, 1960.

46. Land, A. H., and A. Doig, "An Automatic Method for Solving Discrete
Programming Problems," Econometrica, Vol. 28, pp. 497-520, 1960.

47. Balas, E., "An Additive Algorithm for Solving Linear Programs With Zero-One
Variables," Operations Research, 13, pp. 517-546, 1965. 0

48. Gelattly, K. M. and P. B. Marcal, "Investigation of Advanced Aircraft
Technology," NASA Report No. 2356-950001, 1967.

49. Gisvold, K. M.and J. Moe, "A Method for Nonlinear Mixed-Integer Programming
and its Application to Design Problems," ASME J. of Engineering for Industry,
Vol. 94, pp. 353-364, 1972.

41

I?

50. Wilde, D. J., Globally Optimal Design, Wiley, N.Y., 1978.

51. Wilde, D. J., "Monotonicity and Dominance in Hydraulic Cylinder Design," ASME
J. of Engineering for Industry, Vol. 94, No. 4, 1975.

52. Papalambros, P.and D. J. Wilde, "Global Non-Iterative Design Optimization Using
Monotonicity Analysis," ASME J. of Mechanical Design, Vol. 101, No. 4, pp.
643-649, 1979.

53. Papalambros, P.and D. J. Wilde, "Regional Monotonicity in Optimum Design,"
ASME J. of Mechanical Design, Vol. 102, No. 3, pp. 497-500, 1980.

54. Zhou, J., R. and W. Mayne, "Interactive Computing in the Application of
Monotonicity Analysis to Design Optimization," ASME J. of Mechanisms,
Transmissions, and Automation in Design, Vol. 105, No. 2, pp. 181-186, 1982.

55. Azarm, S.and P., Papalambros, "An Automated Procedure for Local Monotonicity
Analysis," ASME J. of Mechanisms, Transmissions, and Automation in Design,
Vol. 106, No. 1, pp. 82-89, 1984.

56. Zhou, Land R. W. Mayne, "Monotonicity Analysis and the Reduced Gradient
Method in Constrained Optimization," ASME J. of Mechanisms, Transmissions,
and Automation in Design, Vol. 106, No. 1, pp. 90-94, 1984.

57. Davis, W. J., "A Generalized Decomposition Procedure and its Application to
Engineering Design," J. of Mechanical Design, Vol. 100, pp. 739-746, 1978.

58. Siddall, J. N. and W. K. Michael, "Large Systems Optimization Using
Decomposition with Soft Constraints," ASME J. of Mechanical Design, Vol. 102,
pp. 506-509, 1980.

59. Haftka, R. T., "An Improved Computational Approach for Multilevel Optimum
Design," ASME J. of Structural Design, 12(2), pp. 245-261, 1984.

60. Sobieski, J., "A Linear Decomposition Method for Large Optimization Problems,"
NASA TM 83248, NASA Langley, Hampton, VA, 1982.

61. Sobieski, J.,J.-F. Barthelemy, and G. I. Giles "Aerospace Engineering Design by
Systematic Decomposition and Multilevel Optimization," 14th Congress of the
International Congress of the Aeronautical Sciences, Paper No. ICAS-84-4.7.3,
1984.

62. Sobieski, Land R. T. Haftka, "Interdisciplinary Optimum Design," Proceedings of
the NATO Advanced Study Institute in Computer-Aided Optimal Design, Portugal,
pp. 29-60, 1986.

63. Kron, G., "A Method for Solving a Very Large Physical System in Easy Stages,"
Proceedings of the Inst. of Radio Engineers, Vol. 42, No. 4, pp. 680-686, 1954.

42

KNAPP&1111',I'.

uvhitI

64. Azarm, S.and W. Li, "A Two-Level Decomposition Method for Design
Optimization," invited paper in the Proceedings of an NSF workshop in Design
Theory and Methodology, pp. 453-502, Feb. 1987 (also under review in
Engineering Optimization Journal).

65. Azarm, S.and W. Li, "Optimal Design Using a Two-Level Monotonicity-Based
Decomposition Method," ASME Design Automation Conference, 1987 (under
review in ASME Journal of Mechanisms, Transmissions, and Automation in
Design).

66. Arora, J. and G. Baenziger, "Uses of AI in Design Optimization," Computer
Methods in Applied Mechanics and Engineering, Vol. 54, pp. 303 (1986).

67. Azarm, S. and M. Pecht, "Knowledge Gathering For Heuristic Programming in
Design Optimization," Accepted for publication: Journal of Engineering
Optimization, Jan. 10 (1987).

68. Azarm, S. and M. Pecht, "A Coupled Algorithmic-Heuristic Approach For Design
Optimization," IEEE Transaction on Systems, Man and Cybernetics, Vol. 17, May
(1987).

69. Azarm, S. and P. Papalambros, "A Case Study for a Knowledge-Based Active Set
Strategy," Journal of Mechanical Transmissions and Automation in Design, Vol.
106, No. 1 (1984).

70. Li, H. and P. Papalambros, "A Production System for Use of Optimization
Knowledge," Journal of Mechanical Transmissions and Automation in Design.

71. Waren, A.D.and M.S. Hung, and Lasdon, L.S., "The Status of Nonlinear
Programming Software: An Update," 1986, to be published.

72. "Goals and Priorities for Research in Engineering Design," A Report to Design
Research Community, The American Society of Mechanical Engineers, July 1986.

43

W..v

O

U

Appendix A 2
A COUPLED ALGORITHMIC-HEURISTIC

OPTIMIZATION SYSTEM

!a
_o

A COUPLED ALGORITHMIC-HEURISTIC

OPTIMIZATION SYSTEM

A. INTRODUCTION

The need to develop optimization techniques that can use information not used by
traditional nonlinear programming techniques was discussed first by Azarm and

Papalambros [Refs. 55, 69] and implemented in a production system by Li and

Papalambros, [Ref. 71]. In that research, the idea was to integrate global knowledge

available for a particular problem into a nonlinear programming technique. The knowledge

was organized in the form at of rules describing possible constraint activity or inactivity,

redundancy, and dominance. Motivation for that research came mainly from experiences

with monotonicity analysis.

Here, a different approach for building an optimization system is proposed. This

idea is to use different local optimization strategies and to observe the effect of each strategy

on the overall performance of the NLP method by using a set of test problems. In this

study, the parameters used to measure the overall performance of the NLP method include

the number of objective function evaluations, the number of constraint functions

evaluations, and the number of gradient evaluations. The observations made here become

the knowledge utilized by the heuristic procedures. The heuristic procedures essentially

select the local optimization strategy that is best suited to solve a particular problem based

on the overall performance. Since the action taken by heuristic procedures may not be

deterministic, the strength of their action is examined based on the degree of certainty in

their premise.

L B. DESCRIPTION OF THE OPTIMIZATION ALGORITHM

The general optimization problem is formulated as:

minimize f(x)

A- I

'a

subject to:

gj (x) = 0 j = 1...m

gj (x) =< 0 j = (m+l) p

where f and gj are scalar objective and constraint functions, and x is a n-vector of design

variables.

The optimization algorithm described here is based on the observation that in design
optimization there usually exists a large number of inequality constraints, many of them
satisfied as equalities at the optimum (active constraint). An active set strategy based on
local monotonicity information is then utilized. Two principles used in the local
monotonicity analysis are repeated here for convenience. Referring to problem (1) we have

the following principles:

(1) If the objective function is monotonic with respect to (w.r.t.) a particular
variable in the neighborhood of a local minimum, then there exists at least one
active constraint with opposite monotonicity w.r.t. that variable in that
neighborhood.

(2) If the objective function is stationary w.r.t. a particular variable in the
neighborhood of a local minimum, then either all constraints containing that
variable are inactive, or there exists at least two active constraints having
opposite monotonicity w.r.t. that variable in that neighborhood.

These principles can be viewed as a special case of the Karash-Kuhn-Tucker
(KKT) optimality conditions. Since both principles identify the candidate active
constraints, a selection criterion is necessary. The selection criterion uses a local

dominance criterion to select the active constraint per rule in a given iteration. If the local

prediction of monotonicity is untrue, corrective action, such as a line search between the
points generated by two consecutive iterations is taken. The basic steps of the approach are

summarized below. INGiven an initial point as the current point x;

Step 1:

Find partial derivatives of the objective and constraint functions. If there are
some constraints active at this point, then the partial constrained derivatives are U p

evaluated [Ref. 6].A

A-2 .

Step 2: 'N

If II Vf(x)II ,

and if

(a) x is feasible, then check KKT optimality conditions. If they are satisfied, then I '"

x = x* and stop; otherwise deactivate constraint(s) with negative Lagrange
multiplier(s) and go to step 1: 0

(b) x is infeasible, then deactivate the current active set and go to Step 1. '.

Otherwise, continue to Step 3. A

Step 3:

In the objective function, select the variable (referred to as the active variable)
for which the objective function has the largest absolute partial derivative.
Continue to Step 4.

Step 4:

Apply first and second monotonicity principles to identify the active
constraint(s). If no constraint is active, go to Step 5; otherwise go to Step 6.

Step 5:

Move along a descent direction to a new point and then go to Step 1.
Step 6: _

If estimated monotonicities are preserved, go to Step 1. Otherwise deactivate %

the constraints associated with offending monotonicities. If monotonicity .N
estimates generate violations pertaining to the objective function, do a one-
dimensional search. If the violations pertain to the constraints, make a descent
move. Then return to Step 1.

To improve the reliability of the algorithm, a sequential quadratic programming ,-

(SQP) technique similar to that suggested by Powell [Ref. 37] can be introduced.
Transition from a local monotonicity strategy to the sequential quadratic programming

technique occurs whenever there is no improvement in the objective function value after a

specified number of iterations. The sequential quadratic programming solves a quadratic
programming subproblem in each iteration. This subproblem is an approximation of the

Lagrangian subject to linearized constraints of (1), and it is guaranteed to have a positive

definite Hessian. The subproblem is stated in the following form: %

A-3

-....

minimize

Q(5) f(i) +t Vf(x) +=18 tB (_ X
2p

subject to: N

J .

whereIr

xp

The solution of this quadratic programming subproblem estimates the Lagrange

multipliers and determines the direction of search used in a subsequent one-dimensional

search. This one-dimensional minimization has two goals--to decrease the objective

function and to minimize the constraint infeasibilities. The function used for one-

dimensional minimzation is:

m PcD(a) =f(x) + I ujlgj(x)j + F, uji max(O,gj(x))
j=l j=m+l1

where

x = 3F + aso, u. i >u

Here, we select uj =IXji Ifor the first iteration and

u=max [j'- (uj + iij

for subsequent iterations to guarantee convergence. .

A-4

Appendix B

ADDITIONAL READING ON
OPTIMIZATION

ADDITIONAL READING ON OPTIMIZATION

BOOKS:
Angel, E. and R. Bellman, Dynamic Programming and Partial Differential Equations,

Academic Press, NY (1972).

Aris, R., Discrete Dynamic Programming, Ginn-Blaisdell Waltham, Mass. (1964).

Arrow, J., "Social Choice and Individual Values," Cowles Commission Monograph 12,
Wiley, NY (1951).

Avriel, M., M.J. Rijckaert, and D.J. Wilde, Optimization and Design, Prentice-Hall,
Englewood Cliffs, NJ (1973).

Aris, R., The Optimal Design of Chemical Reactors, Academic Press, New York (1964).

Bagchi, A. and H.T. Jongen, (Eds.), Systems and Optimization, Springer-Verlag, Berlin
(1985).

Beightler, C.S., D.T. Phillips, and D.J. Wilde, Foundations of Optimization, Prentice-
Hall, NJ (1979).

Bensoussan, A. and J.L. Lions, (Eds.), Analysis and Optimization of Systems, Springer-
Verlag, Berlin (1984).

Bracken, J. and G.P. McCormick, Selected Applications of Nonlinear Programming,
Wiley, New York (1968).

Brayton, R.K. and R. Spence, Sensitivity and Optimization, Elsevier Scientific Publishing
Co., Amsterdam (1980).

Breuer, M.A., Design Automation of Digital Systems, Prentice-Hall, NJ (1972).

Bunn, D.W., Analysis for Optimal Decisions, Wiley, Chichester (1982).

Carmichael, D.G., Structural Modelling and Optimization, Halsted Press, New York
(1982).

Coleman, A., Game Theory and Experimental Games, Pergamon, NY (1982).

B-1

Dym, C.L. (Ed.), Application of Knowledge-Based Systems to Engineering Analysis and
Design, Publication No. AD-10, American Society of Mechanical Engineers, New York(1985). -

Evtushenko, Y.G., Numerical Optimization Techniques, Optimization Software, NY
(1985).

Fletcher, R., Practical Methods of Optimization, Wiley, NY (1980).

Fox, R. L., Optimization Methods for Engineering Design, Addison Wesley, Reading, PA
(1971).U

Gero, J. (Ed.), Knowledge Engineering in Computer-Aided Design, North-Holland,
Amsterdam (1985).

Haimes, Y.Y.and V. Chankong, Decision Making With Multiple Objectives, Springer-
Verlag, NY (1985).

Haug, E.J. and J.S. Arora, Applied Optimal Design, Wiley-Interscience, New York
(1979).

Hiriart-Urruty, J.B., W. Oettli, and J. Stoer, (Eds.), Optimization Theory and Algorithms,
Dekker, NY (1983).

Jelen, F.C., Cost and Optimization Engineering, McGraw-Hill, New York (1970).

Johnson, R.C., Optimum Design of Mechanical Elements; Wiley-Interscience, New York
(1961, 1980).

Jones, A.J., Game Theory: Mathematical Models of Conflict, Wiley, NY (1980).

Leitman, G., Optimization Techniques with Applications to Aerospace Systems, Academic
Press (1962).

Lev, O.E. (Ed.), Structural Optimization -Recent Developments and Applications, ASCE,
New York (1981).

McCormick, G.P., Nonlinear Programming, Wiley (1983).

Mickle, M.H. and T.W. Sze, Optimization in Systems Engineering, International
Textbook, PA (1972).

Morris, A.J., Foundations of Structural Optimization: A Unified Approach, Wiley,

Chichester (1982).

Rubinstein, M. F., Patterns of Problem Solving, Prentice-Hall, NJ (1975).

Samad, T., A Natural Language Interface for Computer-aided Design, Kluwer, Norwell,
MA (1986).

Sengupta, J.K., Optimal Decisions Under Uncertainty, Springer-Verlag, Berlin (1985).

B-2

Serafini, P. (Ed.), Mathematics of Multi-Objective Optimization, Springer-Verlag, NewYork (1985).

Siddall, J.N., Analytical Decision-Making in Engineering Design, Prentice-Hall,
Englewood Cliffs, NJ (1972).

Spunt, L., Optimum Structural Design. Prentice-Hall, Englewood Cliffs, NJ (1971).

Stark, R.M. and R.L. Nichols, Mathematical Foundations of Design: Civil Engineering
Systems, McGraw-Hill, New York (1972).

Steuer, R.E., Multiple Criteria Optimization: Theory, Computation, and Application,
Wiley, New York (1986).

Stoecker, W.F., Design of Thermal Systems, McGraw-Hill, New York (1971, 1981).

Swap, W.C. (Ed.), Group Decision Making, Sage Publications, Beverly Hills (1984).

Szidarovszky, F., M.E.,Gershon, and L. Duckstein, Techniques for Multiobjective
Decision Making in Systems Management, Elsevier, New York (1986).

Tillman, F.A., C.L. Hwang, and W. Kuo, Optimization of Systems Reliability; Marcel S
Dekker, N.Y. (1980).

Williams, H.P., Model Building in Mathematical Programming, Wiley-Interscience,
Chichester (1978).

Yu, P.L., Multiple-Criteria Decision Making: Concepts, Techniques, and Extensions, I
Plenum Press, NY (1985).

Zener, C., Engineering Design by Geometric Programming (1971).

PAPERS: _

Amyot, J.R., "PAROPT: A Parameter Optimization Program", ASME Computers in
Engineering, Vol. 1, 1985.
Azarm. S., "Local Monotonicity in Optimal Design, PhD Dissertation", Department of , .Mechanical Engineering and Applied Mechanics, University of Michigan, Ann Arbor,
1984.

Betts, J.T., "Frontiers in Engineering Optimization", Journal of Mechanisms,
Transmissions, and Automation in Design, Vol. 105, June 1983.
Chalfan, K.M., "A Knowledge System that Integrates Heterogeneous Software for a
Design Application" AI Magazine, Summer 1986, pp. 80-84.

Greene, D.C. and E.E. Lowery, "Supportability Control Factors", Proceedings Annual
Reliability and Maintainability Symposium, 1986.

Howe, A., J.R. Dixon, P.R. Cohen, and M.K. Simmons, DOMINIC: A Domain
Independent Program for Mechanical Engineering Design, Proceedings First International

B-3

Conference on Application of Artificial Intelligence to Engineering Problems,
Southampton, England, April, 1986.

Lilijeqvist, P., J. Nilsson, and L. Sjodin, "Operational and Logistic Resource Optimization ' P
at Organizational Level", Annals of the Society of Logistics Engineers, October 1986,
p.26.

Luksan, L., "A Compact Variable Metric Algorithm for Nonlinear Minimax
Approximation", Computing, Vol. 36, pp. 355-373, 1986.

Mittal, S., C.L. Dym, and M. Marjaria, "PRIDE: An Expert System for the Design of
Paper Handling Systems", Computer, July 1986, p. 102

Mostow, J., "Towards Better Models of the Design Process", Al Magazine, Vol. 6, No. 1, X
1985

Naft, J. and M. Pecht, "A RAMCAD/ULCE Workstation Shell Structure", Proceedings
Annual Reliability and Maintainability Symposium, 1987.

Nye, W.T. and A.L. Tits, "An Application Oriented Optimization-Based Methodology of
Interactive Design of Engineering Systems", International Journal of Control, 1986, Vol.
43, No. 6, 1693-1721.

Penot, J. and A. Sterna-Karwat, "Parametrized Multicriteria Optimization: Continuity and v _
Closedness of Optimal Multifunctions", Journal of Mathematical Analysis and ..

Applications, Vol. 120, No. 1, pp. 150-168, Nov. 1986.

Pinter, J., "Extended Univariate Algorithms for n-Dimensional Global Optimization",
Computing, Vol. 36, pp. 91-103, 1986. ON

Popplestone, R. et al, "Engineering Design Support Systems", First International
Conference on Applications of Artificial Intelligence in Engineering, 1986.

Tits, A.L. and Z. Ma, "Interaction, Specification Refinement, and Tradeoff Exploration in
Optimization-Based Design of Engineering Systems", IFAC Control Applications of
Nonlinear Programming and Optimization, Capri, Italy, 1985.

Wang, C., "The Principle and Models of Dynamic Programming", Journal of Mathematical
Analysis and Applications, Vol. 118, No. 2, pp. 287-308, Sept. 1986.

B-4

DISTRIBUTION
IDA PAPER P-2064

DECISION SUPPORT REQUIREMENTS IN A UNIFIED LIFE
CYCLE ENGINEERING (ULCE) ENVIRONMENT) S

Volume 11. Conceptual Approaches to Optimization

63 Copies

Number of

OUSD (R&AT/ET)
Rm. 3D1089, Pentagon
Washington. DC 20301-3080

ATTN: Raymond Siewert 1

OUSD (R&AT)/ET
Rm. 3D1089, Pentagon
Washington, DC 20301-3080

ATTN: Dr. Leo Young 1

Mr. Russell R. Shorey 1
Assistant Deputy, Systems, OASD/P&LDepartment of Defense

Room 2B322, Pentagon
Washington, DC 20301-8000

Col. Larry Griffin
OASD (P&L) WSIG
Rm. 2B322, Pentagon
Washington, DC 20301-8000

Dr. William E. Isler
Director, Prototyping Applications
DARPA, ISTO
Arlington, VA 22209-2308

Office of the Secretary of Defense 1
OUSDRE (DoD-IDA Management Office)
1801 N. Beauregard Street
Alexandria, VA 22311

DL-1

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

Miscellaneous. U.S. Government

Dr. Michael J. Wozny 1
Director, Division of Design, Manufacturing,

and Computer-Integrated Engineering
National Science Foundation
1800 G Street, N.W.
Washington, DC 20550

INDo Wtmet of the A=m

Mr. Geza Papp
Chief of Technology
U.S. Army AMCCOM
Building 62
Picatinny Arsenal
Dover, NJ 07806-5000

Departent of the Air Force

Dr. Sam Rankin
Director, Mathematical Optimization Program
Air Force Office of Scientific Research
Bolling Air Force Base
Washington, DC 20332-9448

Capt. Maureen Harrington
Program Manager, ULCE Decision Support
Logistics and Human Factors Branch
Air Force Human Resources Laboratory
Wright-Patterson AFB, OH 45433-5000

Col. Donald Tetmeyer
Director, Logistics and Human Factors Division
Air Force Human Resources Laboratory
Wright-Patterson AFB, OH 45433-5000

Dr. Melvin C. Ohmer 1
Field OPR, ULCE Program
AFWAL Materials Laboratory
AFWAIJCAM
Wright-Patterson AFB, OH 45433

p

DL-2

Mr. Nick Bernstein1
AFWAJJFIBR
Bldg. 45
Wright-Patterson AFB, OH 45433

Capt. John Thomas 1
AFOSR
Wright-Patterson AFB, OH 45433

Mr. James R. Meeker
Air Force Systems Command/DLSR
Bldg. 1535, Rm. CD310.
Andrews Air Force Base
Washington, DC 20334

Col. Eugene Tatini
Air Force Systems Command/PLX
Andrews Air Force Base
Washington, DC 20009

Industrial Organizatiors

D.Shapour Azarm1
Department of Mechanical Engineering
University of Maryland
Collegc Park, MD 20742

Mr. Mark Erchich1
Laboratory Head
Adv. CAD/CAMICAE
Eastman Kodak Company
7/23 Kodak Park
Rochester, NY 14650 •

Dr. Iman Foroutan 1
Chief, Engineering Automation Section
Microelectronic Circuits Division
Industrial Electronics Group
Hughes Aircraft Company •
P. O. Box H, 500 Superior Avenue
Newport Beach, CA 92658-8903

Mr. Siegfried Goldstein 1
Siegfried Enterprises, Inc.
P. 0. Box 2308
North Babylon, NY 11703

DL-3

Mr. Ken Johnson . a
Manager, Design Technology Department
Lockheed-Georgia Company
Department 72-92/Zone 419
86 S. Cobb Street
Marietta, GA 30063

Dr. Janusz Kowalik
Engineering Technology Applications
Boeing Computer Services
2760 160th Avenue, S.E.
Belleview, WA 98008

Dr. Robert Kuenne
Professor of Economics
Princeton University
63 Bainbridge Street
Princeton, NJ 08540

Dr. Alan Mitchell
Director, Preliminary Design Tool Development
Research and Engineering Division
Boeing Aerospace Company
P. 0. Box 3999, MS 82-23
Seattle, WA 98124-5214

Mr. Joseph Naft
Director, Ccmnputer Aided Design Laboratory
Engineering Research Center
University of Maryland
College Park, MD 20742

Mr. David Owen 1
NTL, Inc.
P. O. Box 597
Northport, NY 11768

Dr. Michael Pecht
Associate Professor of Mechanical Engineering
Mechanical Engineering Department
University of Maryland
College Park, MD 20742

Mr. Arne P. Rasmussen
Private Consultant C ,
464 Severnside Drive
Severna Park, MD 21146

DL-4

Mr. Edward Rogan 1
Design Technology Department
Lockheed-Georgia Company
Department D72-92 -
Marietta, GA 30063

Brother Tom Sawyer 1
Bishop McNamara igh School
6800 Marlboro PikeForestville, MD 20747-3270

Dr. Edison T.S. Tse 1
Director, Decision Systems Laboratory
Stanford University
Department of Engineering-Economic Systems
Stanford, CT 94305 0

Institute for Defense Analyses
1801 N. Beauregard Street
Alexandria, VA 22311

Gen. William Y. Smith I
Mr. Philip L. Major 1
Dr. William J. Schultis 1
Dr. Victor A. Utgoff 1
Dr. Jeffrey H. Grotte 1
Dr. Frederick R. Riddell 1
Mr. William E. Cralley 10
Ms. ML Brei 1
Dr. Karen J. Richter 1
Mr. David A. Dierolf 1
Mr. G. Watts Hill 1
Control and Distribution 10

101

I

DL-5

7vff
IONk

1 1 '

jE-77C

